Warianty tytułu
Badania właściwości mechanicznych stopów aluminium stosowanych w przemyśle motoryzacyjnym
Języki publikacji
Abstrakty
The paper presents one of the most important mechanical properties of aluminium alloys used in the automotive industry, which mainly determine the material resistance to mechanical loads. Samples were made of aluminium alloys from the 3xxx series (core) and 4xxx series (clad). The latter material layer begins to melt at the brazing temperature (582°C) and forms brazed joints between the surfaces of the base sheets. Commonly, these alloys are used as aluminium brazing sheets and applied in automotive to heat exchangers manufacturing, i.e. radiators, condensers, evaporators, heaters, oil coolers and charge air coolers. Samples of these materials were subjected to mechanical property measurements. In order to assess the changes in the materials during their life cycle, the properties after the manufacturing process and the exploitation tests were compared. Therefore, brazing process was realized in N2 controlled atmosphere. Moreover, one of the most important investigations in terms of the heat exchangers working conditions simulation which is resistance to thermal shocks, was performed. The material working conditions indicate that they should comply with above test requirements, including liquid contact, whose temperature range may refer to 0÷90°C. Particular attention was focused on properties such as Martens hardness, Vickers hardness, Young`s modulus and plastic strain, which have significant role in evaluation of product performance and improving its lifetime. For the measurements, a Fischer Picodentor HM 500 nanoindenter equipped with a Vickers indenter was used. The main advantages of the nanoindentation technique are the accurate and reliable results which might optimize heat exchanger. Furthermore, an optical microscopy was applied to analyse the indentations on the sample surfaces.
W pracy omówiono ważniejsze właściwości mechaniczne stopów aluminium stosowanych w przemyśle motoryzacyjnym, w tym w produkcji samochodowych wymienników ciepła. Szczególną uwagę zwrócono na takie właściwości, jak: twardość Martensa, twardość Vickersa, moduł Younga i odkształcenie plastyczne. Decydują one o odporności materiału na działanie obciążeń mechanicznych, natomiast ich analiza ma znaczenie w ocenie jakości finalnej wyrobu. Głównym celem pracy było porównanie właściwości mechanicznych stopów aluminium po procesie wytwarzania oraz po próbie wytrzymałościowej, aby zaobserwować zmiany właściwości materiałów podczas ich pracy.
Czasopismo
Rocznik
Tom
Strony
114--118
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
autor
- Institute of Mechanical Technology, Poznan University of Technology, Poznań, katarzyna.p.peta@doctorate.put.poznan.pl
autor
- Institute of Mechanical Technology, Poznan University of Technology, Poznań
autor
- Institute of Mechanical Technology, Poznan University of Technology, Poznań
Bibliografia
- [1] Zhao H., Elbel S., Hrnjak P.: Influence of surface morphology on wetting behaviors of liquid metal during aluminum heat exchanger fabrication. 15th International Refrigeration and Air Conditioning Conference, Purdue, July 14th-17th (2014) 1÷8.
- [2] Moćko W.: Dynamic properties of aluminium alloys used in automotive industry. Journal of KONES Powertrain and Transport 19 (2012) 345÷351.
- [3] Kutz M.: Mechanical Engineers Handbook. Materials and Engineering Mechanics. Wiley, Hoboken (2015).
- [4] Pokova M., Cieslar M., Lacaze J.: Enhanced AW3003 aluminum alloys for heat exchangers. WDS’11 Proceedings of Contributed Papers, Prague, July 31th May-3rd May (2011) 141÷146.
- [5] Kłyszewski A., Żelechowski J., Frontczak A., Rutecki P., Szymański W., Zamkotowicz Z., Nowak M.: New rolled aluminium alloy products for the automotive industry. Archives of Metallurgy and Materials 59 (2014) 393÷396.
- [6] Kim H., Lee S.: Effect of a brazing process on mechanical and fatigue behavior of a clad aluminium 3005. Journal of Mechanical Science and Technology 26 (2012) 2111÷2115.
- [7] Thulukkanam K.: Heat exchanger design handbook. CRC Press, Boca Raton (2013).
- [8] Tu Y., Tong Z., Jiang J.: Effect of microstructure on diffusional solidification of 4343/3005/4343 multi-layer aluminium brazing sheet. Metallurgical and Materials Transactions A 44 (2013) 1762÷1766.
- [9] Nayeb-Hashemi H., Lockwood M.: The effect of processing variables on the microstructures and properties of aluminium brazed joints. Journal of Materials Science 37 (2002) 3705÷3713.
- [10] Nikanarov S. P., Volkov M. P., Gurin V. N., Burenkov Y. A., Derkachenko L. I., Kardashev B. K., Regel L., Wilcox W. R.: Structural and mechanical properties of Al–Si alloys obtained by fast cooling of a levitated melt. Materials Science and Engineering A 390 (2005) 63÷69.
- [11] Garbiec D., Siwak P., Mróz A.: Effect of compaction pressure and heating rate on microstructure and mechanical properties of spark plasma sintered Ti6Al4V alloy. Archives of Civil and Mechanical Engineering 16 (2016) 702÷707.
- [12] Garbiec D., Siwak P.: Study on microstructure and mechanical properties of spark plasma sintered Alumix 431 powder. Powder Metallurgy 4 (2016) 1÷7.
- [13] Kahl S., Ekstrom H. E., Mendoza J.: Tensile, fatigue, and creep properties of aluminum heat exchanger tube alloys for temperatures from 293 K to 573 K. Metallurgical and Materials Transactions A 45 (2014) 663÷681.
- [14] Dubey A.: Investigation on suitability of aluminium to copper in a radiator. Manufacturing Science and Technology 3 (2015) 16÷23.
- [15] Takagi H., Dao M., Fujiwara M., Otsuka M.: Creep characterization of aluminum–magnesium solid-solution alloy through self-similar microindentation. Materials Transactions 47 (2006) 2006÷2014.
- [16] Wang Y., Qu S., Gai Y., Dong S., Liang Y.: Residual strains of aluminium alloy characterized by nanoindentation. Transactions of Nonferrous Metals Society of China 19 (2009) 767÷771.
- [17] Yabushita M., Goda T., Ono Y., Tezuka H., Sato T., Oda K., Shioda M., Evaluation of Young`s modulus of high stiffness aluminium die cast alloys using nanoindentation technique. International Journal of Cast Metals Research 21 (2008) 180÷185.
- [18] Guo W. C., Xu H., Gao X. Q., Hou X. L., Li Y.: A modified method for hardness determination from nanoindentation experiments with imperfect indenters. Advances in Materials Science and Engineering (2016) 1÷8.
- [19] Skarbiński P.: Linie technologiczne Seco/Warvick do lutowania aluminiowych wymienników ciepła. Przegląd mechaniczny 6 (2008) 21÷28.
- [20] Siwak P., Garbiec D., Chwalczuk T.: Badania właściwości technologicznych płytek skrawających z węglików spiekanych typu WC6Co wytwarzanych metodą impulsowo plazmową. Mechanik 88 (2015) 113÷122.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fb18fc26-4ff1-41ce-9db5-db5c09208515