Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Nr 46 | 87--104
Tytuł artykułu

On asymptotic property of solutions of higher order functional differential equations

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We establish sucient conditions for the linear func- tional differential equation of n-th order of the forms y(n)(t) + p(t)y(g(t)) = 0 and y(n)(t) - p(t)y(g(t)) = 0 to have property A and B, where p and g ϵ C ([σ, ∞), (0, ∞)), with g ϵ R and g(t) ≥ t, and n ≥ 2 is a positive integer
Wydawca

Rocznik
Tom
Strony
87--104
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Department of Mathematics and Statistics Mississippi State University Mississippi state, MS 39762, U.S.A, ses_2312@yahoo.co.in
autor
  • Department of Mathematics and Statistics Mississippi State University Mississippi state, MS 39762, U.S.A.
Bibliografia
  • [1] Agarwal R.P., Grace S.R., Oscillation theorems for certain functional differential equations of higher order, Math. Comp. Modelling, 39(2004), 1185-1194.
  • [2] Bainov D.D., Mishev D.P., Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, New York 1990.
  • [3] Erbe L., Kong Q., Zhang B.G., Oscillation Theory for Functional Differ¬ential Equations, Marcel Dekker Inc., New York 1995.
  • [4] Graef J.R., Koplatadze R., Kvinikadze G., Nonlinear functional differ¬ential equations with properties A and B, J. Math. Anal. Appl., 306(2005), 136-160.
  • [5] Gramatikopolous M.K., Koplatadze R., Kvinikadze G.V., Linear functional differential equations with property A, J. Math. Anal. Appl., 284 (2003), 294-314.
  • [6] Gregus M., Gera M., Some results in the theory of a third order linear differential equations, Ann. Polonici Math., XLII(1983), 93-102.
  • [7] Gyori I., Ladas G., Oscillation Theory of Delay Differential Equations, Clarendon Press, Oxford 1991.
  • [8] Hanan M., Oscillation criteria for third order linear differential equations, Pacific J. Math., 11(1961), 919-944.
  • [9] Kiguradze I.T., Chanturia T.A., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Academic Pub., London 1993.
  • [10] Kusano T., Naito M., Comparison theorems for functional differential equa¬tions with deviating arguments, J. Math. Soc. Japan, 33(1981), 509-532.
  • [11] Koplatadze R.G., On oscillatory properties of solutions of functional differ¬ential equations, Mem. Differential Equations Math. Phys., 3(1994), 1-179.
  • [12] Koplatadze R., Kvinikadze G., Stavroulakis I.P., Properties A and B of n-th order linear differential equations with deviating arguments, Georgian Math. J., 6(6)(1999), 553-566.
  • [13] Ladde G.S., Lakshmikantham V., Zhang B.G., Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, INC. New York and Bassel 1987.
  • [14] Parhi N., Padhi S., Asymptotic behaviour of solutions of third order delay differential equations, Indian J.Pure and Appl. Math., 33(10)(2002), 1609-1620.
  • [15] Parhi N., Padhi S., Asymptotic behaviour of solutions of delay differential equations of n-th order, Arch. Math. (BRNO), 37(2001), 81-101.
  • [16] Padhi S., Asymptotic behaviour of solutions to n-order functional differential equations, Elec. J. Diff. Equs., 65(2005), 1-14.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fb016d93-ae8a-4412-97de-642660f51b13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.