Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 9 | 92--100
Tytuł artykułu

The Impact of Different Extraction Conditions on the Concentration and Properties of Dissolved Organic Carbon in Biochars Derived from Sewage Sludge and Digestates

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to determine the quantity and quality of dissolved organic carbon (DOC) released from sewage sludge-derived biochar and digestion-derived biochar under different extraction conditions (deionised water, hot water, 0.1 mol·L-1 NaOH) using TOC analyser, UV-vis spectroscopy. Biochars were produced through the pyrolysis process at temperatures of 400, 500, 600, and 800°C. The objective of this article was to examine the influence of diverse extraction solutions on the amount of dissolved organic carbon (BDOC) released from biochars and to delineate alterations in the composition and characteristics of DOC contingent on the extraction parameters. The f indings demonstrated that elevated pyrolysis temperatures resulted in a notable reduction in DOC concentration, with fractions extracted using NaOH exhibiting the highest DOC concentrations. SUVA254 analysis and the E2/E3 ratio indicated that biochars produced at higher temperatures contained a greater proportion of aromatic and hydrophobic substances. These results indicate that pyrolysis temperature, feedstock type and extraction conditions are of significant importance for the properties of DOC in biochar. This has important implications for their potential applications in soil management and carbon sequestration strategies.
Wydawca

Rocznik
Strony
92--100
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland, j.kujawska@pollub.pl
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland, e.wojtas@pollub.pl
  • Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland, barbara.charmas@mail.umcs.pl
Bibliografia
  • 1. Azeem M., Sun T.R., Jeyasundar P.G.S.A., Han R.X., Li H., Abdelrahman H., Shaheen S.M., Zhu Y.G., Li G. 2023. Biochar-derived dissolved organic matter (BDOM) and its influence on soil microbial community composition, function, and activity: A review. Critical Reviews in Environmental Science and Technology, 53(21), 1912–1934. https://doi.org/10.1080/10643389.2023.2190333
  • 2. Curtin D., Beare M.H., Chantigny M.H., Greenf ield L.G. 2011. Controls on the extractability of soil organic matter in water over the 20 to 80°C temperature range. Soil Science Society of America Journal, 75(4), 1423–1430. https://doi.org/10.2136/sssaj2010.0401
  • 3. Davis T.W. 2023. Assessing the effects and environmental implications of biochar amendment in agricultural soils. Indian Journal of Pure & Applied Biosciences, 11(2), 13–22. https://doi.org/10.18782/2582-2845.8989
  • 4. Ding J., Xia Z., Lu J. 2012. Esterification and deacidification of a waste cooking oil (TAN 68.81 mg KOH/g) for biodiesel production. Energies, 5(8), 2683–2691. https://doi.org/10.3390/en5082683
  • 5. Feng Z., Fan Z., Song H., Li K., Lu H., Liu Y., Cheng F. 2021. Biochar induced changes of soil dissolved organic matter: The release and adsorption of dissolved organic matter by biochar and soil. Science of the Total Environment, 783, 147091. https://doi.org/10.1016/j.scitotenv.2021.147091
  • 6. Hamkalo Z. & Bedernichek T. 2014. Total, cold and hot water extractable organic carbon in soil profile: Impact of land-use change. Zemdirbyste, 101(2), 125132. https://doi.org/10.13080/z-a.2014.101.016
  • 7. Lee M.H., Chang E.H., Lee C.H., Chen J.Y., Jien S.H. 2021. Effects of biochar on soil aggregation and distribution of organic carbon fractions in aggregates. Processes, 9(8), 1–16. https://doi.org/10.3390/pr9081431
  • 8. Lehmann J., Kleber M. 2015. The contentious nature of soil organic matter. Nature, 528(7580), 60–68. https://doi.org/10.1038/nature16069
  • 9. Li M., Zhang A., Wu H., Liu H., Lv J. 2017. Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance. Journal of Hazardous Materials, 334, 86–92. https://doi.org/10.1016/j.jhazmat.2017.03.064
  • 10. Liu C.H., Chu W., Li H., Boyd S.A., Teppen B. J., Mao J., Lehmann J., Zhang W. 2019. Quantification and characterization of dissolved organic carbon from biochars. Geoderma, 335(April 2018), 161–169. https://doi.org/10.1016/j.geoderma.2018.08.019
  • 11. Liu H., Zhao B., Zhang X., Li L., Zhao Y., Li Y., Duan K. 2022. Investigating biochar-derived dissolved organic carbon (DOC) components extracted using a sequential extraction protocol. Materials, 15(11). https://doi.org/10.3390/ma15113865
  • 12. Goss M.J., Oliver M. 2023. Encyclopedia of Soils in the Environment. Elsevier Ltd.
  • 13. Peuravuori J., Pihlaja K. 1997. Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta, 337(2), 133–149. https://doi.org/10.1016/S0003-2670(96)00412-6
  • 14. Pradhan S., Kumar P., Mehrotra I. 2014. Characterization of aqueous organics by specific ultraviolet absorbance and octanol water partition coefficient. Journal of Environmental Engineering, 140(2), 2–7. https://doi.org/10.1061/(asce)ee.1943-7870.0000787
  • 15. Tfaily M.M., Chu R.K., Toyoda J., Tolić N., Robinson E.W., Paša-Tolić L., Hess N.J. 2017. Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry. Analytica Chimica Acta, 972, 54–61. https://doi.org/10.1016/j.aca.2017.03.031
  • 16. Uchimiya M., Liu Z., Sistani K. 2016. Fieldscale fluorescence fingerprinting of biochar-borne dissolved organic carbon. Journal of Environmental Management, 169, 184–190. https://doi.org/10.1016/j.jenvman.2015.12.009
  • 17. Wang Q., Pang W., Ge S. J., Yu H., Dai C., Huang X., Li J., Zhao M. 2020. Characteristics of fluorescence spectra, UV spectra, and specific growth rates during the outbreak of toxic microcystis aeruginosa FACHB-905 and Non-Toxic FACHB-469 under different nutrient conditions in a eutrophic microcosmic simulation device. Water (Switzerland), 12(8). https://doi.org/10.3390/w12082305
  • 18. Wang Y., Zhang D., Shen Z., Feng C., Chen J. 2013. Revealing sources and distribution changes of dissolved organic matter (DOM) in pore water of sediment from the Yangtze Estuary. PLoS ONE, 8(10), 11–13. https:// doi.org/10.1371/journal.pone.0076633
  • 19. Wu H., Dong X., Liu H. 2018. Evaluating fluorescent dissolved organic matter released from wetland-plant derived biochar: Effects of extracting solutions. Chemosphere, 212, 638–644. https://doi.org/10.1016/j.chemosphere.2018.08.110
  • 20. Xu H. 2022. Analysis of the relationship between biochar and soil. Highlights in Science, Engineering and Technology, 26, 59–64. https://doi.org/10.54097/hset.v26i.3643
  • 21. Yamashita Y., Ikeda M. 2010. Upgrading pantograph performance using variable stiffness devices. Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), 51(4), 214–219. https://doi.org/10.2219/rtriqr.51.214
  • 22. Yue Y., Xu L., Li G., Gao X., Ma H. 2023. Characterization of dissolved organic matter released from aged biochar: A comparative study of two feedstocks and multiple aging approaches. Molecules, 28(11). https://doi.org/10.3390/molecules28114558
  • 23. Zhang H., Ni J., Qian W., Yu S., Xiang Y., Yang L., Chen W. 2023. Pyrolysis atmospheres and temperatures co-mediated spectral variations of biochar-derived dissolved organic carbon: quantitative prediction and self-organizing maps analysis. Molecules, 28(5). https://doi.org/10.3390/molecules28052247.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-faf7f089-92da-4133-b718-698c1d2070d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.