Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 159, nr 4 | 361--383
Tytuł artykułu

Ordered Weighted Hesitant Fuzzy Information Fusion-Based Approach to Multiple Attribute Decision Making with Probabilistic Linguistic Term Sets

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, an extension of typical hesitant fuzzy element (HFE) called the ordered weighted hesitant fuzzy element (OWHFE) has been proposed to allow the membership of a given element is to be defined in terms of several possible values together with their importance weights. Moreover, the concept of probabilistic linguistic term sets (PLTSs) has been defined to extend hesitant fuzzy linguistic term sets (HFLTSs) by adding probabilities without loss of any original linguistic information. In fact, the concept of PLTS allows the membership of a given element is to be defined in terms of several possible linguistic values over an object together with the probabilistic information of the set of values. However, the PLTSs have some drawbacks in comparison to the newly defined concept OWHFEs, and such disadvantages of the PLTSs can be prevented by using the OWHFEs. This reveals the need of first defining the modified-PLTS (M-PLTS), and then transforming the M-PLTSs to the OWHFEs which will be the heart of this contribution. Finally, to demonstrate the advantage of the proposed methods, we implement again a number of practical problems that were previously associated with PLTSs.
Wydawca

Rocznik
Strony
361--383
Opis fizyczny
Bibliogr. 30 poz., tab.
Twórcy
autor
  • Business School, Sichuan University, Chengdu 610064, P.R. China, xuzeshui@263.net
Bibliografia
  • [1] Beg I, Rashid T. TOPSIS for Hesitant Fuzzy Linguistic Term Sets. International Journal of Intelligent Systems, 2013. 28(12):1162-1171. doi:10.1002/int.21623.
  • [2] Benferhat S, Lagrue S, Papini O. Reasoning with Partially Ordered Information in a Possibilistic Logic Framework. Fuzzy Sets and Systems, 2004. 144:25-41.
  • [3] Benferhat S, Lagrue S, Papini O. Belief Change and Pre-orders: a Brief Overview. Int. J. Geographical Information Science, 2004. 18(4):353-388. URL https://doi.org/10.1080/13658810410001672890.
  • [4] Ma J, Benferhat S, Liu W. Revising Partial Pre-orders with Partial Pre-orders: a Unit-based Revision Framework. Proceedings of the Thirteenth Int. Conference on Principles of Knowledge Representation and Reasoning (KR 2012), 2012. 1:1-16.
  • [5] Farhadinia B. Multiple Criteria Decision-making Methods with Completely Unknown Weights in Hesitant Fuzzy Linguistic Term Setting. Knowledge-Based Systems, 2016. 93:135-144. URL https://doi.org/10.1016/j.knosys.2015.11.008.
  • [6] Farhadinia B. A Series of Score Functions for Hesitant Fuzzy Sets. Information Sciences, 2014. 277:102-110. URL https://doi.org/10.1016/j.ins.2014.02.009.
  • [7] Farhadinia B. Multi Criteria Decision Making Method Based on the Higher Order Hesitant Fuzzy Soft Set. International Scholarly Research Notices, Hindawi, 2014. 277:1-12. URL http://dx.doi.org/10.1155/2014/873454.
  • [8] Farhadinia B. Hesitant Fuzzy Set Lexicographical Ordering and its Application to Multi-attribute Decision Making. Information Sciences, 2016. 327:233-245. URL https://doi.org/10.1016/j.ins.2015.07.057.
  • [9] Farhadinia B. Hesitant Fuzzy Set Lexicographical Ordering and its Application to Multi-attribute Decision Making. Information Sciences, 2013. 240:129-144.
  • [10] Farhadinia B, Xu ZS. Distance and Aggregation-based Methodologies for Hesitant Fuzzy Decision Making. Cognitive Computation, 2017. URL doi:10.1007/s12559-016-9436-2.
  • [11] Liao HC, Xu ZS, Zeng XJ, Merigo JM. Qualitative Decision Making with Correlation Coefficients of Hesitant Fuzzy Linguistic Term Sets. Knowledge-Based Systems, 2015. 76:127-138. doi:10.1016/j.knosys.2014.12.009.
  • [12] Gou XJ, Xu ZS, Liao HC. Multi-criteria Decision Making based on Bonferroni Means with Hesitant Fuzzy Linguistic Information. Soft Computing, 2016. URL doi:10.1007/s00500-016-2211-1.
  • [13] Kim SH, Ahn BS. Interactive Group Decision Making Procedure under Incomplete Information. European Journal of Operational Research, 1999. 116(3):498-507. doi:10.1016/S0377-2217(98)00040-X.
  • [14] Meng FY, Chen XH, Zhang Q. Multi-attribute Decision Analysis under a Linguistic Hesitant Fuzzy Environment. Information Sciences, 2014. 267:287-305. doi:10.1016/j.ins.2014.02.012.
  • [15] Pang Q, Wang H, Xu ZS. Probabilistic Linguistic Term Sets in Multi-attribute Group Decision Making. Information Sciences, 2016. URL doi:10.1016/j.ins.2016.06.021.
  • [16] Rodriguez RM, L. artinez L, Herrera F. Hesitant Fuzzy Linguistic Term Sets for Decision Making. IEEE Transactions on Fuzzy Systems, 2012. 20:109-119. doi:10.1109/TFUZZ.2011.2170076.
  • [17] Rodriguez RM, L. artinez L, Herrera F. A Group Decision Making Model Dealing with Comparative Linguistic Expressions based on Hesitant Fuzzy Linguistic Term Sets. Information Sciences, 2013. 241:28-42. URL https://doi.org/10.1016/j.ins.2013.04.006.
  • [18] Torra V. Hesitant Fuzzy Sets. International Journal of Intelligent Systems, 2010. 25(6):529-539. doi:10.1002/int.20418.
  • [19] Wang YM. Using the Method of Maximizing Deviations to Make Decision for Multi-indices. Journal of Systems Engineering and Electronics, 1998. 7:24-26.
  • [20] Wei CP, Ren ZL, Rodriguez RM. A Hesitant Fuzzy Linguistic TODIM Method based on a Score Function. International Journal of Computational Intelligence Systems, 2015. 8(4):701-712. URL https://doi.org/10.1080/18756891.2015.1046329.
  • [21] Wei CP, Zhao N, Tang XJ. Operators and Comparisons of Hesitant Fuzzy Linguistic Term Sets. IEEE Transactions on Fuzzy Systems, 2014. 22(3):575-585. URL 10.1109/TFUZZ.2013.2269144.
  • [22] Xia MM, Xu ZS. Hesitant Fuzzy Information Aggregation in Decision Making. Int. J. Approximate Reasoning, 2011. 52(3):395-407. URL https://doi.org/10.1016/j.ijar.2010.09.002.
  • [23] Xu ZS. Linguistic Decision Making: Theory and Methods. Science Press, Beijing, 2012. doi:10.1007/978-3-642-29440-2.
  • [24] Xu ZS. Deviation Measures of Linguistic Preference Relations in Group Decision Making. Int. J. Approximate Reasoning, 2005. 33(3):249-254.
  • [25] Xu ZS. Uncertain Multiple Attribute Decision Making: Methods and Applications. 2004.
  • [26] Gou XJ, Xu ZS. Novel Basic Operational Laws for Linguistic Terms, Hesitant Fuzzy Linguistic Term Sets and Probabilistic Linguistic Term Sets. Information Sciences, 2016. 372:407-427. URL https://doi.org/10.1016/j.ins.2016.08.034.
  • [27] Zhang X, Xu ZS, Wang H. Heterogeneous Multiple Criteria Group Decision Making with Incomplete Weight Information: A Deviation Modeling Approach. Information Fusion, 2015. 25:49-62 URL http://dx.doi.org/10.1016/j.inffus.2014.10.006.
  • [28] Zhang Z, Wu C. Weighted Hesitant Fuzzy Sets and Their Application to Multi-criteria Decision Making. British Journal of Mathematics and Computer Science, 2014. 4:1091-1123. doi:10.9734/BJMCS/2014/8533.
  • [29] Zhang YX, Xu ZS, Wang H, Liao H. Consistency-based Risk Assessment with Probabilistic Linguistic Preference Relation. Applied Soft Computing, 2016. 49:817-833. URL https://doi.org/10.1016/j.asoc.2016.08.045.
  • [30] Zhu B, Xu ZS. Consistency Measures for Hesitant Fuzzy Linguistic Preference Relations. IEEE Transactions on Fuzzy Systems, 2014. 22:35-45. doi:10.1109/TFUZZ.2013.2245136.
Uwagi
1. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
2. Bibliografia poz. 16 i 17 - błąd w nazwisku autora (L. artinez L) - powinno być Martinez L.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fad7f1b8-1c13-4053-9d73-003c0a9daa6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.