Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol 53, No. 1 | 3--16
Tytuł artykułu

Between local connectedness and sum connectedness

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new generalization of local connectedness called Z-local connectedness is introduced. Basic properties of Z-locally connected spaces are studied and their place in the hierarchy of variants of local connectedness, which already exist in the literature, is elaborated. The class of Z-locally connected spaces lies strictly between the classes of pseudo locally connected spaces (Commentations Math. 50(2)(2010),183-199) and sum connected spaces ( weakly locally connected spaces) (Math. Nachrichten 82(1978), 121-129; Ann. Acad. Sci. Fenn. AI Math. 3(1977), 185- 205) and so contains all quasi locally connected spaces which in their turn contain all almost locally connected spaces introduced by Mancuso (J. Austral. Math. Soc. 31(1981), 421-428). Formulations of product and subspace theorems for Z-locally connected spaces are suggested. Their preservation under mappings and their interplay with mappings are discussed. Change of topology of a Z-locally connected space is considered so that it is simply a locally connected space in the coarser topology. It turns out that the full subcategory of Z-locally connected spaces provides another example of a mono-coreflective subcategory of TOP which properly contains all almost locally connected spaces.
Wydawca

Rocznik
Strony
3--16
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • Department of Mathematics, Hindu College, University of Delhi, Delhi-110007, India, jk kohli@yahoo.co.in
autor
autor
Bibliografia
  • [1] R.A. Alo and H.L. Shapiro, Normal Topological Spaces, Cambridge University Press, London, 1974.
  • [2] A.V. Arhangel’skii, General Topology III, Springer Verlag, Berlin Heidelberg, 1995.
  • [3] C.E. Aull, On C and C_-embeddings, Indag. Math.(N.S) 37 (1975), 26–33.
  • [4] ´A. Császár, Separation properties of θ-modification of topologies, Acta Math. Hungar. 102 (1-2) (2004), 151–157.
  • [5] A.J. D’Aristotle, Quasicompact and functionally Hausdorff spaces, J. Australian Math. Soc. 15 (1973), 319–324
  • [6] A.M. Gleason, Universal locally connected refinements, Illinois J. Math. 7 (1963), 521–531.
  • [7] H. Herrlich and G.E. Strecker, Coreflective subcategories, Trans. Amer. Math. Soc. 157 (1971), 205–226.
  • [8] H. Herrlich and G.E. Strecker, Category Theory, Allyn and Bacon Inc., Boston, 1973.
  • [9] R.C. Jain, The role of regularly open sets in general topology, Ph.D. Thesis Meerut University, Institute of Advanced Studies, Meerut, India 1980.
  • [10] J.L. Kelly, General Topology, Van Nostrand, New York, 1955.
  • [11] J.K. Kohli, A class of spaces containing all connected and all locally connected spaces, Math. Nachrichten 82 (1978), 121–129.
  • [12] J.K. Kohli and R. Kumar, z-supercontinuous functions, Indian J. Pure Appl. Math. 33 (7) (2002), 1097–1108.
  • [13] J.K. Kohli and D. Singh, D_-supercontinuous functions, Indian J. Pure Appl. Math. 34 (7) (2003), 1089–1100.
  • [14] J.K. Kohli and D. Singh, Between weak continuity and set connectedness, Studii Si Cercetari Stintifice Seria Mathematica 15 (2005), 55–65.
  • [15] J.K. Kohli and D. Singh, Function spaces and strong variants of continuity, App. Gen. Top. 9 (1) (2008), 33–38.
  • [16] J.K. Kohli, D. Singh and J. Aggarwal, R-supercontinuous functions, Demonstratio Math. 43 (3) (2010), 703–723.
  • [17] J.K.Kohli, D.Singh and R. Kumar, Generalizations of z-supercontinuous functions and Dδ- supercontinuous functions, App. Gen. Top. 9 (2) (2008), 239–251.
  • [18] J.K. Kohli, D. Singh and R. Kumar, Some properties of strongly _-continuous functions, Bulletin Cal. Math. Soc. 100 (2) (2008), 185–196.
  • [19] J.K. Kohli, D. Singh R. Kumar and J. Aggarwal, Between continuity and set connectedness, App. Gen. Top. 11 (1) (2010), 43–55.
  • [20] J.K. Kohli, D. Singh and B.K. Tyagi, Quasi locally connected spaces and pseudo locally connected spaces, Commentationes Math. 50 (2) (2010), 183–199.
  • [21] N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly, 67 (1960), 269.
  • [22] P.E. Long and L. Herrington, The T_-topology and faintly continuous functions, Kyungpook Math. J. 22 (1982), 7-14.
  • [23] J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math. Soc. 148 (1970), 265–272.
  • [24] V.J.Mancuso, Almost locally connected spaces, J. Austral. Math. Soc. 31 (1981), 421–428.
  • [25] M. Mrševic, I.L. Reilly and M.K. Vamanamurthy, On semi-regularization topologies, J. Austral. Math. Soc. 38 (1985), 40–54.
  • [26] S.A. Naimpally, On strongly continuous functions, Amer. Math. Monthly 74 (1967), 166–168.
  • [27] T.Nieminen, On ultra pseudo compact and related spaces, Ann. Acad. Sci. Fenn. A I Math. 3(1977), 185–205.
  • [28] T. Noiri, Supercontinuity and some strong forms of continuity, Indian J. Pure. Appl.Math. 15 (3) (1984), 241–250..
  • [29] T. Noiri, On almost locally connected spaces, J. Austral. Math. Soc. 34(1984), 258–264.
  • [30] W.J. Pervin and N. Levine, Connected mappings of Hausdorff spaces, Proc. Amer. Math. Soc. 9 (1956), 488–496.
  • [31] I.L.Reilly and M.K.Vamanamurthy, On super-continuous mappings, Indian J. Pure. Appl. Math. 14 (6) (1983), 767–772.
  • [32] M.K. Singal and S.B. Niemse, z-continuous mappings, Mathematics Student, 66 (1-4) (1997), 193–210.
  • [33] D.Singh, cl-supercontinuous functions, App. Gen. Top. 8 (2) (2007), 293–300.
  • [34] A. Sostak, On a class of topological spaces containing all bicompact and connected spaces, General Topology and its Relations to Modern Analysis and Algebra IV: Proceedings of the 4th Prague Topological Symposium (1976), Part B, 445–451.
  • [35] R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, Pac. J. Math. 50 (1) (1974), 169–185.
  • [36] L.A. Steen and J.A. Seebach, Jr., Counter Examples in Topology, Springer Verlag, New York, 1978.
  • [37] R.M. Stephenson, Spaces for which Stone-Weierstrass theorem holds, Trans. Math. Soc. 133 (1968), 537-546.
  • [38] N.K. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. 78(2) (1968), 103–118.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fad02baf-1088-4c85-945b-80b6bc180f36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.