Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 17, No. 4 | 17--27
Tytuł artykułu

The overview of challenges in detecting patients’ hazards during robot-aided remote home motor rehabilitation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Minimally-supervised home rehabilitation has become an arising technological trend due to the shortages in medical staff. Implementing such requires providing advanced tools for automatic real-time safety monitoring. The paper presents an approach to designing the mentioned safety system based on measurements and modelling the interface between a patient’s musculoskeletal system and a rehabilitation device. The content covers the segmentation of patients regarding their health conditions and assigns them suitable measurement techniques. The defined groups are described by the hazards with which they are most endangered and their causes. Each case is correlated with the appropriate data type that may be used to detect potential risk. Moreover, a concept of using presented knowledge for tracking the safety of bones and soft tissues according to the biomechanical standards is included. The paper forms a set of guidelines for designing safety systems based on measurements for robot-aided home kinesiotherapy. It can be used to select an appropriate approach regarding a specific case; which will decrease costs and increase the accuracy of the designed tools.
Wydawca

Rocznik
Strony
17--27
Opis fizyczny
Bibliogr. 82 poz., rys.
Twórcy
autor
  • ŁUKASIEWICZ Research Network Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202,02-486 Warsaw, Warsaw University of Technology, Plac Politechniki 1, 00‐661 Warsaw, Poland, julia.wilk@piap.lukasiewicz.gov.pl
  • ŁUKASIEWICZ Research Network Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202,02‐486 Warsaw, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland, piotr.falkowski@piap.lukasiewicz.gov.pl
  • ŁUKASIEWICZ Research Network Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202,02-486 Warsaw, tomasz.osiak@awf.edu.pl
  • The Józef Piłsudski University of Physical Education in Warsaw, Marymoncka 34, 00-809 Warsaw, Center of Functional Rehabilitation, Orthos, Kobylańska 30, 02-984 Warsaw, Poland
Bibliografia
  • [1] “Goniometer definition from the national library of medicine”. https://www.myoton.com/technology/. Accessed: 2022-07-29.
  • [2] “MotonPro website”. https://www.ncbi.nlm.nih.gov/books/NBK558985/#article-77604.s 1. Accessed: 2022-07-29.
  • [3] A. Abdel-Wahab, K. Alam, and V. V. Silberschmidt. “Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, 2011, pp. 807–820, doi: 10.1016/j.jmbbm.2010.10.001.
  • [4] A. Affanni. “Wireless sensors system for stress detection by means of ecg and eda acquisition,” Sensors (Switzerland), vol. 20, 2020, doi:10.3390/s20072026.
  • [5] S. Agyapong-Badu, M. Warner, D. Samuel, and M. Stokes. “Practical considerations for standardized recording of muscle mechanical properties using a myometric device: Recording site,muscle length, state of contraction and prioractivity,” Journal of Musculoskeletal Research, vol. 21, 2018, doi: 10.1142/S0218957718500100.
  • [6] E. Akdoǧan. “Upper limb rehabilitation robot for physical therapy: Design, control, and testing,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 24, 2016, pp. 911–934, doi: 10.3906/elk-1310-50.
  • [7] R. M. N. Alexander. “Tendon elasticity and muscle function,” Comparative Biochemistry and Physiology – A Molecular and Integrative Physiology, vol. 133, 2002, pp. 1001–1011, doi:10.1016/S1095-6433(02)00143-5.
  • [8] L. Alibiglou, W. Z. Rymer, R. L. Harvey, and M. M. Mirbagheri. “The relation between ashworth scores and neuromechanical measurements of spasticity following stroke,” Journal of NeuroEngineering and Rehabilitation, vol. 5, 2008, doi: 10.1186/1743-0003-5-18.
  • [9] L. L. Andersen, C. H. Andersen, O. S. Mortensen, O. M. Poulsen, I. Birthe, T. Bjørnlund, and M. K. Zebis. “Muscle activation and perceived loading during rehabilitation exercises,” 2010.
  • [10] Z. Atanelov and T. P. Bentley. Greenstick Fracture, StatPearls Publishing, Treasure Island (FL), 2021.
  • [11] G. C. Barroso and E. S. Thiele. “Muscle injuries in athletes,” Revista brasileira de ortopedia, vol. 46, 2011, pp. 354–358.
  • [12] A. M. Beres. “Time is of the essence: A review of electroencephalography (eeg) and event-related brain potentials (erps) in language research,”Applied psychophysiology and biofeedback, vol. 42, no. 4, 2017, pp. 247–255.
  • [13] B. B. Bhakta, R. J. O’Connor, and J. A. Cozens.“Associated reactions after stroke: A randomized controlled trial of the effect of botulinum toxin type a,” Journal of Rehabilitation Medicine,vol. 40, 2008, pp. 36–41, doi: 10.2340/16501977-0120.
  • [14] F. Biering-Sørensen, J. B. Nielsen, and K. Klinge.“Spasticity-assessment: A review,” Spinal Cord, vol. 44, 2006, pp. 708–722, doi: 10.1038/sj.sc.3101928.
  • [15] E. S. Chumanov, B. C. Heiderscheit, and D. G. Thelen. “Hamstring musculotendon dynamics during stance and swing phases of high speed running,” Medicine and science in sports and exercise, vol. 43, no. 3, 2011, p. 525.
  • [16] C. Couppé, R. B. Svensson, J. F. Grosset, V. Kovanen, R. H. Nielsen, M. R. Olsen, J. O. Larsen, S. F. Praet, D. Skovgaard, M. Hansen, P. Aagaard, M. Kjaer, and S. P. Magnusson. “Life-long endurance running is associated with reduced glycation and mechanical stress n connective tissue,” Age, vol. 36, 2014, doi: 10.1007/s11357-014-9665-9.
  • [17] S. Crea, M. Nann, E. Trigili, F. Cordella, A. Baldoni, F. J. Badesa, J. M. Catalán, L. Zollo, N. Vitiello, N. G. Aracil, and S. R. Soekadar. “Feasibility and safety of shared eeg/eog and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living,” Scientific Reports, vol. 8, 2018, doi: 10.1038/s41598-018-29091-5.
  • [18] J. J. Crisco, P. Jokl, G. T. Heinen, M. D. Connell, and M. M. Panjabi. “A muscle contusion injury model: Biomechanics, physiology, and histology,” The American Journal of Sports Medicine, vol. 22, no. 5, 1994, pp. 702–710, doi: 10.1177/036354659402200521, PMID: 7810797.
  • [19] T. Davenport and R. Kalakota. “The potential for artificial intelligence in healthcare,” Futurehealthcare journal, vol. 6, no. 2, 2019, p. 94.
  • [20] B. Derby and R. Akhtar. “Finite element and softcomputing methods engineering materials and processes mechanical properties of aging soft tissues”.
  • [21] I. Díaz, J. J. Gil, and E. Sánchez. “Lower-limb robotic rehabilitation: Literature review andchallenges,” Journal of Robotics, vol. 2011, 2011, pp. 1–11, doi: 10.1155/2011/759764.
  • [22] C. Ethier, E. R. Oby, M. J. Bauman, and L. E. Miller. “Restoration of grasp following paralysis through brain-controlled stimulation of muscles,” Nature, vol. 485, 2012, pp. 368–371, doi: 10.1038/nature10987.
  • [23] P. Falkowski. “An optimisation problem for exoskeleton-aided functional rehabilitation of an upper extremity,” IOP Conference Series: Materials Science and Engineering, vol. 1239, no. 1, 2022, doi: 10.1088/1757-899x/1239/1/012012.
  • [24] P. Falkowski. “Light exoskeleton design with topology optimisation and fem simulations for technology,” Journal of Automation Mobile Robotics and Intelligent Systems, vol. 15, no. 2, 2021, pp. 14–19.
  • [25] P. Falkowski. “Predicting dynamics of a rehabilitation exoskeleton with free degrees of freedom,” 2022, pp. 223–232.
  • [26] P. Falkowski, T. Osiak, and A. Pastor. “Analysis of needs and requirements of kinesiotherapy in poland for robot design purposes,” Prace Naukowe – Politechnika Warszawska. Elektronika z. 197, Postępy robotyki. T. 2, 2022.
  • [27] P. Falkowski, T. Osiak, J. Wilk, N. Prokopiuk,B. Leczkowski, Z. Pilat, and C. Rzymkowski.“Study on the applicability of digital twins for home remote motor rehabilitation,” Sensors, vol. 23, no. 2, 2023, p. 911.
  • [28] G. L. Farfalli, M. A. Buttaro, and F. Piccaluga. “Femoral fractures in revision hip surgeries with impacted bone allograft,” Clinical Orthopaedics and Related Research, vol. 462, 2007, pp. 130–136, doi: 10.1097/BLO.0b013e318137968c.
  • [29] M. Florin, M. Arzdorf, D. Ing, B. Linke, J. A. Auer, and D. Acvs. “Assessment of stiffness and strength of 4 different implants available for equine fracture treatment: A study on a 201 oblique long-bone fracture model using a bone substitute,” Veterinary Surgery,vol. 34, no. 3, pp. 231–238, doi: 10.1111/j.1532-950X.2005.00035.x.
  • [30] M. Fredericson, F. Jennings, C. Beaulieu, and G. O. Matheson. “Stress fractures in athletes,” 1995.
  • [31] J. J. Gerhardt. “Clinical measurements of joint motion and position in the neutral-zero method and sftr recording: Basic principles,” Disability and Rehabilitation, vol. 5, 1983, pp. 161–164, doi:10.3109/03790798309167039.
  • [32] M. Harker. “Psychological sweating: A systematic review focused on aetiology and cutaneous response,” Skin Pharmacology and Physiology,vol. 26, 2013, pp. 92–100, doi: 10.1159/000346930.
  • [33] H. Head and G. Riddoch. “The automatic bladder, excessive sweating and some other relfex conditions, in gross injuries of spinal cord,” 11, 1917.
  • [34] E. Hohmann, N. Keough, V. Glatt, K. Tetsworth, R. Putz, and A. Imhoff. “The mechanical properties of fresh versus fresh/frozen and preserved (thiel and formalin) long head of biceps tendons: A cadaveric investigation,” Annals of Anatomy, vol. 221, 2019, pp. 186–191, doi: 10.1016/j.aanat.2018.05.002.
  • [35] L. J. Holanda, P. M. Silva, T. C. Amorim, M. O. Lacerda, C. R. Simão, and E. Morya. “Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: A systematic review,” Journal of NeuroEngineering and Rehabilitation, vol. 14, 2017, doi: 10.1186/s12984-017-0338-7.
  • [36] M. R. Islam, B. Brahmi, T. Ahmed, M. Assad-Uz-Zaman, and M. H. Rahman. “Exoskeletons in upper limb rehabilitation: A review to find key challenges to improve functionality,” Control Theory in Biomedical Engineering, 2020, pp. 235–265.
  • [37] C. Jayawardena, K. Watanabe, and K. Izumi. “Probabilistic neural network based learning rom fuzzy voice commands for controlling a robot,” 11 2022.
  • [38] O. Karcioglu, H. Topacoglu, O. Dikme, and O. Dikme. “A systematic review of the pain scales in adults: Which to use?,” American Journal of Emergency Medicine, vol. 36, 2018, pp. 707–714, doi: 10.1016/j.ajem.2018.01.008.
  • [39] A. Kelati, E. Nigussie, I. B. Dhaou, J. Plosila, and H. Tenhunen. “Real-time classification of pain level using zygomaticus and corrugator emg features,” Electronics, vol. 11, no. 11, 2022, p. 1671.
  • [40] M. Khamar and M. Edrisi. “Designing a back-stepping sliding mode controller for an assistant human knee exoskeleton based on nonlinear disturbance observer,” Mechatronics, vol. 54, 2018, pp. 121–132, doi: 10.1016/j.mechatronics.2018.07.010.
  • [41] M. Kjaer. “Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading,” Physiological reviews, vol. 84, no. 2, 2004, pp. 649–698.
  • [42] C. W. Kolz, T. Suter, and H. B. Henninger.“Regional mechanical properties of the long head of the biceps tendon,” Clinical Biomechanics, vol. 30, 2015, pp. 940–945, doi: 10.1016/j.clinbiomech.2015.07.005.
  • [43] T. Koyama, J. G. McHaffie, P. J. Laurienti, and R. C. Coghill. “The subjective experience of pain: Where expectations become reality,” 2005.
  • [44] L. F. Lee and B. R. Umberger. “Generating optimal control simulations of musculoskeletal movement using opensim and matlab,” PeerJ, vol. 2016, 2016, doi: 10.7717/peerj.1638.
  • [45] K. S. Leung, W. Y. Shen, P. C. Leung, A. W. . Kinninmonth, J. C. W. Chang, and G. P. Y. Chan. “The journal of bone and joint surgery ligamentotaxis and bone grafting for comminuted fractures of the distal radius,” 1989.
  • [46] E. Lew, R. Chavarriaga, S. Silvoni, and J. del R. Millán. “Detection of self-paced reaching movement intention from eeg signals,” Frontiers in Neuroengineering, 2012, doi: 10.3389/fneng.2012.00013.
  • [47] S. Liber-Kneć, Aneta i Łagan. “Metody badań bio-materiałów i tkanek – wstęp do ćwiczeń laboratoryjnych”.
  • [48] N. Lotti, M. Xiloyannis, G. Durandau, E. Galofaro, V. Sanguineti, L. Masia, and M. Sartori. “Adaptive model-based myoelectric control for a soft wearable arm exosuit: A new generation of wearable robot control,” IEEE Robotics & Automation Magazine, vol. 27, no. 1, 2020, pp. 43–53.
  • [49] E. López-Larraz, L. Montesano, Ángel Gil-Agudo, and J. Minguez. “Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement eeg correlates,” Journal of NeuroEngineering and Rehabilitation, vol. 11, 2014, p. 153.
  • [50] P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt. “Jner journal of neuroengineering and rehabilitation review open access a survey on robotic devices for upper limb rehabilitation,” Journal of NeuroEngineering and Rehabilitation, vol. 11, 2014, p. 3.
  • [51] M. L. Martin, K. J. Travouillon, P. A. Fleming, and N. M. Warburton. “Review of the methods used for calculating physiological cross-sectional area (pcsa) for ecological questions,” Journal of Morphology, vol. 281, no. 7, 2020, pp. 778–789.
  • [52] R. B. Martin, D. B. Burr, N. A. Sharkey, and D. P. Fyhrie. Mechanical Properties of Ligament and Tendon, pp. 175–225. Springer New York, New York, NY, 2015.
  • [53] M. Mekki, A. D. Delgado, A. Fry, D. Putrino, and V. Huang. “Robotic rehabilitation and spinal cord injury: a narrative review,” Neurotherapeutics, vol. 15, 2018, pp. 604–617, doi: 10.1007/s13311-018-0642-3.
  • [54] L. B. Mellick and K. Reesor. “Spiral tibial fractures of children: A commonly accidental spiral long bone fracture,” The American Journal of Emergency Medicine, vol. 8, no. 3, 1990, pp. 234–237,doi: 10.1016/0735-6757(90)90329-X.
  • [55] D. D. Molinaro, A. S. King, and A. J. Young. “Biomechanical analysis of common solid waste collection throwing techniques using opensim and an emg-assisted solver,” Journal of Biomechanics, vol. 104, 2020, doi: 10.1016/j.jbiomech.2020.109704.
  • [56] E. K. Naeini, A. Subramanian, M.-D. Calderon, K. Zheng, N. Dutt, P. Liljeberg, S. Salantera, A. M. Nelson, A. M. Rahmani, et al.. “Pain recognition with electrocardiographic features in postoperative patients: method validation study,” Journal of Medical Internet Research, vol. 23, no. 5, 2021.
  • [57] A. Neviaser, N. Andarawis-Puri, and E. Flatow. “Basic mechanisms of tendon fatigue damage,” Journal of Shoulder and Elbow Surgery, vol. 21, 2012, pp. 158–163, doi: 10.1016/j.jse.2011.11.014.
  • [58] J. Perry and G. Bekey. “Emg-force relationships in skeletal muscle,” Critical reviews in biomedical engineering, vol. 7, no. 1, 1981, pp. 1–22.
  • [59] S. R. Piva, E. A. Goodnite, and J. D. Childs.“Strength around the hip and flexibility of soft tissues in individuals with and without patellofemoral pain syndrome,” 2005, pp. 793–801, doi: 10.2519/jospt.2005.35.12.793.
  • [60] P. Poli, G. Morone, G. Rosati, and S. Masiero.“Robotic technologies and rehabilitation: New tools for stroke patients’ therapy,” BioMed Research International, vol. 2013, 2013, doi:10.1155/2013/153872.
  • [61] I. A. Pop and G. Dogaru. “Role of kinesio-therapy in the recovery of patients with primary coxarthrosis,” Balneo Research Journal, vol. 4, 2013, pp. 144–148, doi: 10.12680/balneo.2013.1054.
  • [62] M. V. Ruiz. “Simulation of the assistance of an exoskeleton on lower limbs joints using opensim memory,” 2017.
  • [63] K. U. Schmitt, P. F. Niederer, D. S. Cronin, B. Morrison, M. H. Muser, and F. Walz. Trauma Biomechanics: An Introduction to Injury Biomechanics, Taylor and Francis, 2019, pp. 1–287, doi: 10.1007/978-3-030-11659-0.
  • [64] J. Schumm, M. Bächlin, C. Setz, B. Arnrich, D. Roggen, and G. Tröster. “Effect of movements on the electrodermal response after a startle event,” Methods of Information in Medicine, vol. 47, 2008, pp. 186–191, doi: 10.3414/ME9108.
  • [65] A. Seth, J. L. Hicks, T. K. Uchida, A. Habib, C. L. Dembia, J. J. Dunne, C. F. Ong, M. S. DeMers, A. Rajagopal, M. Millard, S. R. Hamner, E. M. Arnold, J. R. Yong, S. K. Lakshmikanth, M. A. Sherman, J. P. Ku, and S. L. Delp. “Opensim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement,”PLoS Computational Biology, vol. 14, 2018, doi: 10.1371/journal.pcbi.1006223.
  • [66] D. Shi, W. Zhang, W. Zhang, and X. Ding. “A review on lower limb rehabilitation exoskeleton robots,” Chinese Journal of Mechanical Engineering, vol. 32, no. 1, 2019, pp. 1–11.
  • [67] C. S. Shin, A. M. Chaudhari, and T. P. Andriacchi. “Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone,” Medicine and Science in Sports and Exercise, vol. 43, 2011, pp. 1484–1491, doi:10.1249/MSS.0b013e31820f8395.
  • [68] D. Stashuk. “Emg signal decomposition: how can it be accomplished and used?,” Journal of Electromyography and Kinesiology, vol. 11, 2001, pp. 151–173.
  • [69] O. Subasi, A. Oral, and I. Lazoglu. “A novel adjustable locking plate (alp) for segmental bone fracture treatment,” Injury, vol. 50, 2019, pp. 1612–1619, doi: 10.1016/j.injury.2019.08.034.
  • [70] G. Sun, Z. Wen, D. Ok, L. Doan, J. Wang, and Z. S. Chen. “Detecting acute pain signals from human eeg,” Journal of neuroscience methods, vol. 347, 2021.
  • [71] V. R. Sweta, R. P. Abhinav, and A. Ramesh. “Role of virtual reality in pain perception of patients following the administration of local anesthesia,” Annals of Maxillofacial Surgery, vol. 9, 2019, pp. 110–113, doi: 10.4103/ams.ams_26_18.
  • [72] F. Sylos-Labini, V. La Scaleia, A. d’Avella, I. Pisotta, F. Tamburella, G. Scivoletto, M. Molinari, S. Wang, L. Wang, E. van Asseldonk, et al. “Emg patterns during assisted walking in the exoskeleton,” Frontiers in human neuroscience, vol. 8, 2014, p. 423.
  • [73] R. Sánchez-Reolid, M. T. López, and A. Fernández-Caballero. “Machine learning for stress detection from electrodermal activity: A scoping review,”2020, doi: 10.20944/preprints202011.0043.v1.
  • [74] R. T. “Clinical assessment and management of spasticity: a review,” Acta Neurol Scand Supply, vol. 190, 2010, doi: 10.1111/16000404.
  • [75] Z. Tayeb, R. Bose, A. Dragomir, L. E. Osborn, N. V. Thakor, and G. Cheng. “Decoding of pain perception using eeg signals for a real-time reflex system in prostheses: A case study,” Scientific reports, vol. 10, no. 1, 2020, pp. 1–11.
  • [76] H. T. Temple, T. R. Kuklo, D. E. Sweet, C. L. M. H. Gibbons, and M. D. Murphey. “Rectus femorismuscle tear appearing as a pseudotumor,” The American Journal of Sports Medicine, vol. 26, no. 4, 1998, pp. 544–548, doi: 10.1177/03635465980260041301, PMID: 9689376.
  • [77] K. S. Türker. “Electromyography: some methodological problems and issues,” Physical Therapy, vol. 73, no. 10, 1993, pp. 698–710.
  • [78] J. J. van der Heijden-Spek, J. A. Staessen, R. H. Fagard, A. P. Hoeks, H. A. S. Boudier, and L. M. V. Bortel. “Effect of age on brachial artery wall properties differs from the aorta and is gender dependent a population study from the department of pharmacology,” 2000.
  • [79] L. M. Weber and J. Stein. “The use of robots in stroke rehabilitation: A narrative review,” NeuroRehabilitation, vol. 43, 2018, pp. 99–110, doi: 10.3233/NRE-172408.
  • [80] J. Wilk and P. Falkowski. “A concept of detecting patient hazards during exoskeleton-aided remote home motor rehabilitation,” Prace Naukowe -Politechnika Warszawska. Elektronika z. 197, Postępy robotyki. T. 2, 2022.
  • [81] T. L. Willett, D. Y. Dapaah, S. Uppuganti, M. Granke, and J. S. Nyman. “Bone collagen network integrity and transverse fracture toughness of human cortical bone,” Bone, vol. 120, 2019, pp. 187–193, doi: 10.1016/j.bone.2018.10.024.
  • [82] B. Yu, H. Liu, and W. E. Garrett. “Mechanism of hamstring muscle strain injury in sprinting,” Journal of Sport and Health Science, vol. 6, 2017, pp. 130–132, doi: 10.1016/j.jshs.2017.02.002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-facb9861-71ab-43b1-afb3-ed812457e6a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.