Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 3 | art. no. e194, 2023
Tytuł artykułu

Analysis of mechanical and microstructural characteristics of plunger-assisted ECAP strengthened Ti-6Al-4V alloy sheets

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Often known as the workhorse among titanium alloys, Ti-6Al-4 V has been useful in the aerospace and biomedical sectors. For further enhancement of the mechanical characteristics of Ti-6Al-4 V alloy, its sheets procured for the present study have been subjected to equal channel angular pressing (ECAP) using a die setup having a channel angle of 120° and corner angle of 10° at its forming temperature of 650 °C followed by appropriate annealing treatments. Microstructural analysis post the hot-ECAP process has demonstrated ultrafine grain (UFG) refinement because of this severe plastic deformation technique of ECAP. Phase analysis has further substantiated the reduction of β-phase in the alloy as a controlling factor in improving the mechanical properties. As a result, the room temperature hardness and tensile strength have improved by 10% and 15%, respectively, due to a drastic reduction in grain size from ~ 906 nm to ~ 359 nm, which is in line with the well-established Hall–Petch equation. Basic finite element modeling has been studied as concerned with the sustainability and feasibility of the die setup to withstand the heavy metal forming forces involved in the ECAP of Ti-6Al-4 V. This success in processing Ti-6Al-4 V by a single pass of an ECAP using channel angle of 120° and corner angle of 10° under a controlled equivalent strain further opens doors for incorporating additional steps and criteria to achieve even higher grain refinement and strength enhancements thereby catering to the needs for manufacturing the assault vehicles and bioimplants.
Wydawca

Rocznik
Strony
art. no. e194, 2023
Opis fizyczny
Bibliogr. 35 poz., fot., rys., wykr.
Twórcy
  • School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India, pss11@iitbbs.ac.in
  • Department of Mechanical Engineering and University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
  • School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
  • School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
  • Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India, chandanpy.1989@gmail.com
Bibliografia
  • 1. Iwahashi Y, Horita Z, Nemoto M, Langdon TG. The process of grain refinement in equal-channel angular pressing. Acta Mater. 1998;46:3317–31. https:// doi. org/ 10. 1016/ S1359- 6454(97) 00494-1.
  • 2. Kang D-H, Kim T-W. Mechanical behavior and microstructural evolution of commercially pure titanium in enhanced multi-pass equal channel angular pressing and cold extrusion. Mater Des. 2010;31:S54-60.
  • 3. Ye L, Liu H, Sun C, Zhuo X, Ju J, Xue F, et al. Achieving high strength, excellent ductility, and suitable biodegradability in a Zn-0.1Mg alloy using room-temperature ECAP. J Alloys Compd. 2022;926:166906. https://doi.org/10.1016/j.jallcom.2022.166906.
  • 4. Wang X, Ma Y, Meng B, Wan M. Effect of equal-channel angular pressing on microstructural evolution, mechanical property and biodegradability of an ultrafine-grained zinc alloy. Mater Sci Eng A. 2021;824:141857. https://doi.org/10.1016/j.msea.2021.141857.
  • 5. Ghosh A, Ghosh M. 3D FEM simulation of Al-Zn-Mg-Cu alloy during multi-pass ECAP with varying processing routes. Mater Today Commun. 2021;26:102112. https:// doi. org/ 10. 1016/j. mtcomm.2021.102112.
  • 6. Iwahashi Y, Horita Z, Nemoto M, Wang J, Langdon TG. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr Mater. 1996;35:143–6.
  • 7. Lieblich M, Barriuso S, Multigner M, González-Doncel G, González-Carrasco JL. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: effects on the microstructure, resid- ual stresses and mechanical properties. J Mech Behav Biomed Mater. 2016;54:173–84.
  • 8. Chen F, Wang D, Wu S. Influence of ultrasonic vibration-assisted cutting on ploughing effect in cutting Ti6Al4V. Arch Civ Mech Eng. 2021;21:1–19.
  • 9. Kim J-D, Murugan SP, Kim JW, Chun C-K, Kim SW, Hong J-K, et al. α/β phase transformation and dynamic recrystallization induced microstructure development in fine-grained Ti-6Al-4V friction stir weld. Mater Charact. 2021;178: 111300.
  • 10. Deng G, Zhao X, Su L, Wei P, Zhang L, Zhan L, et al. Effect of high pressure torsion process on the microhardness, microstructure and tribological property of Ti6Al4V alloy. J Mater Sci Technol. 2021;94:183–95.
  • 11. Jabłońska MB, Kowalczyk K, Tkocz M, Bulzak T, Bednarczyk I, Rusz S. Dual rolls equal channel extrusion as unconventional SPD process of the ultralow-carbon steel: finite element simu- lation, experimental investigations and microstructural analysis. Arch Civ Mech Eng. 2021;21:25. https:// doi. org/ 10. 1007/ s43452-020-00166-3.
  • 12. Jabłońska MB, Kowalczyk K, Tkocz M, Chulist R, Rodak K, Bednarczyk I, et al. The effect of severe plastic deformation on the IF steel properties, evolution of structure and crystallo- graphic texture after dual rolls equal channel extrusion deforma- tion. Arch Civ Mech Eng. 2021;21:153. https://doi.org/10.1007/ s43452-021-00303-6.
  • 13. Sahoo PS, Mahapatra MM, Vundavilli PR, Pandey C. Effects of working temperature on microstructure and hardness of Ti-6Al- 4V alloy subjected to asymmetrical rolling. J Mater Eng Perform. 2023. https://doi.org/10.1007/s11665-023-08076-0.
  • 14. Zhang ZX, Qu SJ, Feng AH, Hu X, Shen J. Microstructural mechanisms during multidirectional isothermal forging of as-cast Ti-6Al-4V alloy with an initial lamellar microstructure. J Alloys Compd. 2019;773:277–87. https://doi.org/10.1016/j.jallcom.2018. 09.220.
  • 15. Lütjering G, Williams JC. Titanium. Springer Science & Business Media; 2007.
  • 16. Fernandez-Zelaia P, Melkote S, Marusich T, Usui S. A microstruc- ture sensitive grain boundary sliding and slip based constitutive model for machining of Ti-6Al-4V. Mech Mater. 2017;109:67–81.
  • 17. Kherrouba N, Bouabdallah M, Badji R, Carron D, Amir M. Beta to alpha transformation kinetics and microstructure of Ti-6Al-4V alloy during continuous cooling. Mater Chem Phys. 2016;181:462–9. https://doi.org/10.1016/j.matchemphys.2016.06. 082.
  • 18. Djavanroodi F, Omranpour B, Ebrahimi M, Sedighi M. Designing of ECAP parameters based on strain distribution uniformity. Prog Nat Sci Mater Int. 2012;22:452–60. https://doi.org/10.1016/j.pnsc. 2012.08.001.
  • 19. Agwa MA, Ali MN, Al-Shorbagy AE. Optimum processing parameters for equal channel angular pressing. Mech Mater. 2016;100:1–11. https://doi.org/10.1016/j.mechmat.2016.06.003.
  • 20. Yilmaz TA, Totik Y, Lule Senoz GM, Bostan B. Microstructure evolution and wear properties of ECAP-treated Al-Zn-Mg alloy: Effect of route, temperature and number of passes. Mater Today Commun. 2022;33:104628. https://doi.org/10.1016/j.mtcomm. 2022.104628.
  • 21. Howeyze M, Eivani AR, Arabi H, Jafarian HR. Effects of defor- mation routes on the evolution of microstructure, texture and tensile properties of AA5052 aluminum alloy. Mater Sci Eng A. 2018;732:120–8. https://doi.org/10.1016/j.msea.2018.06.081.
  • 22. Sahoo PS, Meher A, Mahapatra MM, Vundavilli PR. Understand- ing the fabrication of ultrafine grains through severe plastic defor- mation techniques: an overview. JOM. 2022. https://doi.org/10. 1007/s11837-022-05442-6.
  • 23. Li M, Zhang C, Luo J, Fu M. Thermomechanical coupling simula- tion and experimental study in the isothermal ECAP processing of Ti-6Al-4V alloy. Rare Met. 2010;29:613–20. https://doi.org/ 10.1007/s12598-010-0180-6.
  • 24. Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51:881–981.
  • 25. Ghosh A, Das K, Eivani AR, Mohammadi H, Vafaeenezhad H, Murmu UK, et al. Development of mechanical properties and microstructure for Al–Zn–Mg–Cu alloys through ECAP after optimizing the outer corner angles through FE modeling. Arch Civ Mech Eng. 2023;23:78. https:// doi. org/ 10. 1007/ s43452-023-00609-7.
  • 26. Wang C, Yu D, Niu Z, Zhou W, Chen G, Li Z, et al. The role of pyramidal< c+ a> dislocations in the grain refinement mechanism in Ti-6Al-4V alloy processed by severe plastic deformation. Acta Mater. 2020;200:101–15.
  • 27. Balasubramanian N, Langdon TG. The strength–grain size relationship in ultrafine-grained metals. Metall Mater Trans A. 2016;47:5827–38.
  • 28. Shi Q, Tse YY, Higginson RL. Effects of processing parameters on relative density, microhardness and microstructure of recycled Ti–6Al–4V from machining chips produced by equal channel angular pressing. Mater Sci Eng A. 2016;651:248–58.
  • 29. Kim H, Ha H, Lee J, Son S, Kim HS, Sung H, et al. Outstanding mechanical properties of ultrafine-grained Al7075 alloys by high- pressure torsion. Mater Sci Eng A. 2021;810: 141020.
  • 30. Semenova IP, Polyakov AV, Polyakova VV, Huang Y, Valiev RZ, Langdon TG. High-cycle fatigue behavior of an ultrafine-grained Ti–6Al–4V alloy processed by ECAP and extrusion. Adv Eng Mater. 2016;18:2057–62.
  • 31. Zhao Z, Wang G, Zhang Y, Gao J, Hou H. Microstructure evolu- tion and mechanical properties of Ti-6Al-4V Alloy prepared by multipass equal channel angular pressing. J Mater Eng Perform. 2020;29:905–13. https://doi.org/10.1007/s11665-020-04673-5.
  • 32. Bratov V, Borodin EN. Comparison of dislocation density based approaches for prediction of defect structure evolution in aluminium and copper processed by ECAP. Mater Sci Eng A. 2015;631:10–7.
  • 33. Xiao Q, Liang Y-J, Chen Q, Sha G, Lu W, Guo W, et al. Towards stronger high-entropy alloy by nanoprecipitation-hardened ultrafine-/nano-grains. Mater Sci Eng A. 2020;787: 139474.
  • 34. Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC. Metastable high- entropy dual-phase alloys overcome the strength–ductility trade off. Nature. 2016;534:227–30.
  • 35. Foltz JW, Welk B, Collins PC, Fraser HL, Williams JC. Forma- tion of grain boundary α in β Ti alloys: its role in deformation and fracture behavior of these alloys. Metall Mater Trans A. 2011;42:645–50.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fab9674f-657a-4d35-8617-aed9a1cdb308
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.