Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 49, nr 2 | 375--382
Tytuł artykułu

Innovative method of properties determination for tools covered with PVD coatings using computer simulation

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of this work is to determine residual stresses of coats obtained in PVD process with the use of finite elements method and comparative analysis with results obtained by laboratory investigations. Design/methodology/approach: Article introduces the usage of finite elements method for simulation of stresses measurement process in TiN Ti(C,N) and TiC coats obtained in magnetron PVD process on high-speed steel PM HS6-5-3-8. Modelling of stresses was performed with the help of finite element method in MARC environment, and the experimental values of stresses were determined basing on the sin2ψ. Findings: The presented model meets the initial criteria, which gives ground to the assumption about its usability for determining the stresses in coatings, employing the finite element method using the MARC program. The computer simulation results correlate with the experimental results. Research limitations/implications: To evaluate with more detail the possibility of applying these coatings in tools, further computer simulation should be concentrated on the determination of other properties of the coatings for example- microhardness. Originality/value: From results of the simulation based on the finite element method is possible to compute the mechanical properties of coatings obtained in PVD process.
Wydawca

Rocznik
Strony
375--382
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, agata.sliwa@polsl.pl
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of, Department of Mechanical Technology, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemvaros, Hungary
autor
  • Bay Zoltan Foundation for Applied Research Miskolc 3519, Igloi u. 2., Hungary
autor
  • Bay Zoltan Foundation for Applied Research Miskolc 3519, Igloi u. 2., Hungary
Bibliografia
  • [1] L.A. Dobrzański, M. Staszuk, K. Gołombek, A. Śliwa, M. Pancielejko, Structure and properties PVD and CVD coatings deposited onto edges of sintered cutting tools, Archives of Metallurgy and Materials 55/1 (2010) 187-193
  • [2] L.A. Dobrzański, W. Kwaśny, Z. Brytan, R. Shishkov, B. Tomov, Structure and properties of the Ti+Ti(C,N) coatings obtained in the PVD process on sintered high speed steel, Journal of Materials Processing Technology 157-158 (2004) 312-316.
  • [3] L.A. Dobrzański, D. Pakuła, Structure and properties of the wear resistant coatings obtained in the PVD and CVD processes on tool ceramics, Materials Science Forum 513 (2006) 119-133.
  • [4] L.A. Dobrzanski, K. Golombek, Structure and properties of the cutting tools made from cemented carbides and cermets with the TiN + mono-, gradient- or multi(Ti, Al, Si)N + TiN nanocrystalline coatings, Journal of Materials Processing Technology 164-165 (2005) 805-815.
  • [5] L.A. Dobrzański, J. Mikuła, The structure and functional properties of PVD and CVD coated Al2O3 + ZrO2 oxide tool ceramics, Journal of Materials Processing Technology 167/2-3 (2005) 438-446.
  • [6] K.-D. Bouzakis, G. Skordaris, S. Gerardis, G. Katirtzoglou, S. Makrimallakis, M. Pappa, E. Lill, R. MSaoubi, Ambient and elevated temperature properties of TiN, TiAlN and TiSiN PVD films and their impact on the cutting performance of coated carbide tools, Surface & Coatings Technology 204/6-7 (2009) 1061-1065.
  • [7] M. Kupczyk, Technological and functional quality of cutting tool flanks with the anti-wear coatings, Poznan, 1997 (in Polish).
  • [8] Z. Dyląg, A. Jakubowicz, Z. Orłoś, Strength of materials, WNT, Warsaw, 1996.
  • [9] S. Łączka, Introduction to the ANSYS finite element system, Cracow Technical University Press, Cracow, 1999.
  • [10] T. Burakowski, T. Wierzchon, Engineering of metal surface, WNT, Warsaw, 1995.
  • [11] L.A. Dobrzański, A. Śliwa, W. Sitek, Finite element method application for modeling of PVD coatings properties, Proceedings of the 5th International Surface Engineering Conference 2006, 26-29.
  • [12] L.A. Dobrzański, A. Śliwa, W. Kwaśny, Employment of the finite element method for determining stresses in coatings obtained on high-speed steel with the PVD process, Journal of Materials Processing Technology 164-165 (2005) 1192-1196.
  • [13] W. Walke, Z. Paszenda, Numerical analysis of three-layer vessel stent made from Cr-Ni-Mo steel and tantalum, International Journal of Computational Materials Science and Surface Engineering 1/1 (2007) 129-137.
  • [14] T. Da Silva Botelho, E. Bayraktar, G. Inglebert, Experimental and finite element analysis of spring back in sheet metal forming, International Journal of Computational Materials Science and Surface Engineering 1/2 (2007) 197-213.
  • [15] I. Son, G. Jin, J. Lee, Y. Im, Load predictions for non-isothermal ECAE by finite element analyses, International Journal of Computational Materials Science and Surface Engineering 1/2 (2007) 242-258.
  • [16] A.V. Benin, A.S. Semenov, S.G. Semenov, Modeling of fracture process in concrete reinforced structures under steel corrosion, Journal of Achievements in Materials and Manufacturing Engineering 39/2 (2010) 168-175.
  • [17] S. Thipprakmas, M. Jin, K. Tomokazu, Y. Katsuhiro, M. Murakawa, Prediction of Fine blanked surface characteristics using the finite element method (FEM), Journal of Materials Processing Technology 198 (2008) 391-398.
  • [18] Z. Tong, Y. Zhang, Z. Zhang, H. Hua, Dynamic behavior and sound transmission analysis of a fluid-structure coupled system using the direct-BEM/FEM, Journal of Sound and Vibration 299/3 (2007) 645-655.
  • [19] Y.-S. Kim, S.-H. Yang, D. Shan, S.-O. Choi, S.-M. Lee, B.-S. You, Three-dimensional rigid-plastic FEM simulation of metal forming processes, Journal of Materials Engineering and Performance 15/3 (2006) 275-279.
  • [20] K. Lenik, D. Wójcicka-Migasiuk, FEM applications to the analysis of passive solar wall elements, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 333-340.
  • [21] J. Okrajni, W. Essler, Computer models of steam pipeline components in the evaluation of their local strength, Journal of Achievements in Materials and Manufacturing Engineering 39/1 (2010) 71-78.
  • [22] S.J. Skrzypek, New opportunities in measurement of materials inner macrostresses by the use of diffraction of x-ray radiation in glancing angle geometry, Scientifically Didactic College Publishing Hose, Cracow, 2001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fab6046e-5b5c-4264-a1a8-bdc7ac30d938
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.