Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 19, no. 1 | 9--16
Tytuł artykułu

Application of quantum entanglement induced polarization for dual-positron and prompt gamma imaging

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The intrinsic resolution of Positron Emission Tomography (PET) imaging is bound by positron range effects, wherein the radioactive decay of the imaging tracer occurs at a disjoint location from positron annihilation. Compounding this issue are the variable ranges positrons achieve, depending on tracer species (the energy they are emitted with) and the medium they travel in (bone vs soft tissue, for example) - causing the range to span more than an order of magnitude across various study scenarios (~0.19 mm to ~6.4 mm). Radioisotopes, such as Zr-89, exhibit dual emissions of positron and prompt gammas, offering an opportunity for accurate tracer positioning as prompt gammas originate from the tracer location. These multi-emission radiotracers have historically suffered from increased noise corresponding to the third gamma interfering in annihilation gamma coincidence pairing. Recent advancements, however, have brought to light the unique property of annihilation gammas having scattering kinematics distinct from random gamma pairs. These properties are born from the singular quantum entanglement state available to the gamma pair following para-positronium decay which prescribes linearly orthogonal polarization. Such coherent polarization is not shared by prompt gamma emissions, offering an opportunity for their discrimination. We present an investigation into this technique, comparing the distribution of relevant scattering kinematics of entangled annihilation gammas and corresponding prompt gammas via a Monte Carlo simulation.
Wydawca

Rocznik
Strony
9--16
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
  • Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, USA
  • Department of Electrical and Computer Engineering, University of California at Santa Cruz, Santa Cruz, USA
  • Department of Electrical and Computer Engineering, University of California at Santa Cruz, Santa Cruz, USA
Bibliografia
  • 1. Bohm D, Aharonov Y. Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 1957;108(4):1070.
  • 2. Pryce MHL, Ward JC. Angular correlation effects with annihilation radiation. Nature 1947;160(4065):435.
  • 3. Hartland SS, Pasternack S, Hornbostel J. Angular correlation of scattered annihilation radiation. Phys. Rev. 1948;73(5):440.
  • 4. Watts DP, Bordes J, Brown JR, Cherlin A, Newton R, Allison J, et al. Photon quantum entanglement in the MeV regime and its application in PET imaging. Nat. Commun 2021;12(1):2646.
  • 5. Alexander I, Abdurashitov D, Baranov A, Guber F, Morozov S, Musin S, et al. Testing entanglement of annihilation photons. Sci. Rep. 2023;13(1):1-11.
  • 6. Sébastien J, Santin G, Strul D, Staelens S, Assié K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol 2004;49(19):4543.
  • 7. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. GEANT4 - a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 2003;506(3):250-303.
  • 8. Perkins ST, Cullen DE, Chen MH, Rathkopf J, Scofield J, Hubbell JH, et al. Tables and graphs of atomic subshell and relaxation data derived from the LLNL Evaluated Atomic Data Library (EADL), Z= 1-100. No. UCRL50400-Vol. 30. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 1991.
  • 9. Enlow E, Diba M, Clayton J, Harris B, Abbaszadeh S. Impact of Flexible Circuit Bonding and System Integration on Energy Resolution of Cross-strip CZT Detectors. IEEE Trans. Radiat. Plasma Med. Sci. 2023;7(6): 580-6.
  • 10. Yuli W, Herbst R, Abbaszadeh S. Development and characterization of modular readout design for two-panel head-and-neck dedicated PET system based on CZT detectors. IEEE Trans. Radiat. Plasma Med. Sci. 2021;6(5):517-21.
  • 11. Mohan L, Yockey B, Abbaszadeh S. Design study of a dedicated head and neck cancer PET system. IEEE Trans. Radiat. Plasma Med. Sci. 2020;4(4):489-97.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fa9c5012-90df-453e-ba3c-97e8b7caf86e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.