Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 8 (43) | 109-127
Tytuł artykułu

State Estimation MRAS and Identification of Stator Winding Phase Fault Detection of the PMSG in Wind Energy Based on the Sliding Mode Control

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a method for the diagnosis of stator inter-turn short-circuit fault for permanent magnet synchronous generators (PMSG). Inter-turn short-circuit currents are among the most critical in PMSG. For safety considerations, a fast detection is required when a fault occurs. This approach uses the parameter estimation of the per-phase stator resistance in closed-loop control of variable speed of wind energy conversion system (WECS). In the presence of an incipient short-circuit fault, the estimation of the resistance of the stator in the d-q reference frame does not make it possible to give the exact information. To solve this problem, a novel fault diagnosis scheme is proposed using parameter estimation of the per-phase stator resistance. The per-phase stator resistance of PMSG is estimated using the MRAS algorithm technique in real time. Based on a faulty PMSG model expressed in Park’s reference frame, the number of short-circuited turns is estimated using MRAS. Fault diagnosis is on line detected by analysing the estimated stator resistance of each phase according to the fault condition. The proposed fault diagnosis scheme is implemented without any extra devices. Moreover, the information on the estimated parameters can be used to improve the control performance. The simulation results demonstrate that the proposed method can estimate the faulty phase.
Wydawca

Rocznik
Strony
109-127
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Higher National School of Renewable Energy, Environment and Sustainable Development, LSPIE Laboratory, Batna, Algeria
autor
  • Higher National School of Renewable Energy, Environment and Sustainable Development, LSPIE Laboratory, Batna, Algeria
  • Laboratory LTI, University of Picardie Jules Verne, Cuffies, Soissons, France
  • Higher National School of Renewable Energy, Environment and Sustainable Development, LSPIE Laboratory, Batna, Algeria
Bibliografia
  • Ackermann, J. (1980). Parameter Space Design of Robust Control Systems. IEEE Transactions on Automatic Control, AC-25(6), pp. 1058-1072.
  • Ackermann, J. (1985). Sampled-Data Control Systems: Analysis and Synthesis, Robust System Design. Berlin: Springer Eds.
  • Ameur, A., Mokhtari, B., Essounbouli, N. and Mokrani, L. (2012). Speed Sensorless Direct Torque Control of a PMSM Drive using Space Vector Modulation Based MRAS and Stator Resistance Estimator. World Academy of Science, Engineering and Technology, Vol:6, No:6, 2012.
  • Amirat, Y., Benbouzid, M. E. H., Al-Ahmar, E., Bensaker, B. and Turri, S. (2009). A Brief Status on Condition Monitoring and Fault Diagnosis in Wind Energy Conversion Systems. Renewable and Sustainable Energy Reviews, 13(9) : 2629-2636.
  • Barut, M., Hinkkanen, M. and Orłowska-Kowalska, T. (2018). Introduction to the Special Section on State and Parameter Estimation Methods for Sensorless Drives. Power Electronics and Drives, 3(38), pp. 111-113. doi: 10.2478/pead-2018-0018.
  • Beltran, B., Benbouzid, M. E. H. and Ahmed-Ali, T. (2009). High-order sliding mode control of a DFIGbased wind turbine for power maximization and grid fault tolerance. In: IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA.
  • Bonnett, H. A. (1978). Analysis of Winding Failures in Three-Phase Squirrel Cage Induction Motors. IEEE Transactions on Industry Applications, 14(3), pp. 223-226.
  • Bouslimani, S., Chrifi-Alaoui, L., Merad, S., Delahoche, L., Bussy, P. and Drid, S. (2022). Stator fault detection of the PMSG under the sliding mode control in wind energy conversion system. In: Conference: 2022 IEEE 21st International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). Sousse, Tunisia, doi: 10.1109/ STA56120.2022.10019025.
  • Bouslimani, S., Drid, S. and Chrifi-Alaoui, L. (2019). Sensorless Control and Diagnosis of Synchronous-Generator used in Wind Energy Conversion System Under Inter Turn Short-Circuit Fault. International Journal of Power and Energy Conversion (IJPEC), 10(4), p. 480. doi: 10.1504/ IJPEC.2019.10012581.
  • Bouslimani, S., Drid, S., Chrifi-Alaoui, L., Bussy, P. and Hamzaoui, M. (2016). Inter-turn faults detection using park vector strategy. In: The 17th International Conference on Sciences and Techniques of Automatic Control & Computer Engineering (STA), Sousse, Tunisia, 18-21 December 2016. doi: 10.1109/STA.2016.7952082.
  • Brandao, R. M., Carvalho, J. B. and Barbosa, F. M. (2008). Fault detection on wind generators. In: 43rd International Universities Power Engineering Conference (UPEC). Padua, Italy.
  • Costa, M. A. A., Braga-Filho, E. R. and Lima, A. M. N. (2013). Designing a low cost high performance permanent magnet motor drive system. In: IECON 2013 – 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10-13 November 2013, pp. 2738-2743. doi: 10.1109/IECON.2013.6699564.
  • Ekanayake, J. B., Holdsworth, L., Wu, X. G. and Jenkins, N. (2003). Dynamic Modeling of Doubly Fed Induction Generator Wind Turbines. IEEE Transaction on Power System, 18(2), pp. 803-809.
  • Fetene, Y. and Shibeshi, D. (2020). Fractional Order Sliding Mode Speed Control of Feedback Linearized Induction Motor. Power Electronics and Drives, 5(40), pp. 109–122. doi: 10.2478/pead-2020-0010.
  • Ghosh, B. K. (1986). Simultaneous Partial Pole Placement: New Approach to Multimode System Design. IEEE Transactions on Automatic Control, AC-31, pp. 440-443.
  • Hajji, S., Chehida, R. B., Zayani, H., Bouaziz, N. and Agrebi Zorgani, Y. (2020). Sensorless Induction Motor Drive Based on Model Reference Adaptive System Scheme Utilising a Fictitious Resistance. Power Electronics and Drives, 5(40), pp. 199-213. doi: 10.2478/pead-2020-0015.
  • Kallesoe, C. S., Vadstrup, P., Rasmussen, H. and Izadi-Zamanabadi, R. (2004). Estimation of Stator Winding Faults in Induction Motors using an Adaptive Observer Scheme. IEEE Industry Applications Conference, 2, pp. 1225-1232. doi: 10.1109/IAS.2004.1348569.
  • Meradi, S., Benmansour, K., Herizi, K., Tadjine, M. and Boucherit, M. S. (2013). Sliding Mode and Fault Tolerant Control For Multicell Converter Four Quadrants. Electric Power Systems Research, 95, 128-139. doi: 10.1016/j.epsr.2012.08.014.
  • Meradi, S., Benmansour, K., Tadjine, M. M. S. and Boucherit, Z. (2022). Observability Concept Analysis for Power Flying Capacitors of Multicells Converters. Electric Power Components and Systems, 49(11-12), pp. 1021-1033. doi: 10.1080/15325008.2021.2013994.
  • Nguyen, H. M. and Naidu, D. S. (2011) Advanced control strategies for wind energy systems. In: IEEE PES Power Systems Conference & Exposition (PSCE), Phoenix, 20-23 March 2011, pp. 1–8. doi: 10.1109/ PSCE.2011.5772514.
  • Robyns, B. (1992). Commande numerique desmoteurs asynchrone et asynchrone’, Seminaire sur les entrainements à vitesse variable’, Rabat, Maroc.
  • Utkin, V., Guldner, J. and Shi, J. (2009). Sliding Mode Control in Electro-Mechanical Systems. CRC Press, Boca Raton, Taylor and Francis Group.
  • Wang, Y. and Deng, Z. (2012). Hybrid Excitation Topologies and Control Strategies of Stator Permanent Magnet Machines for DC Power System. IEEE Transactions on Industrial Electronics, 59(12), pp. 4601-4616. doi: 10.1109/TIE.2012.2183842.
  • Weeber, K. R., Shah, M. R., Sivasubramaniam, K., El-Refaie, A., Qu, R., Stephens, C. and Galioto, S. (2010). Advanced permanent magnet machines for a wide range of industrial applications. In: Proceedings of IEEE PES General Meeting, pp. 1-6, Minneapolis, MN, USA, July 2010.
  • Yin, M., Li, G., Zhou, M. and Zhao, C. (2007). Modeling of the wind turbine with a permanent magnet synchronous generator for integration. In: IEEE Power Engineering Society General Meeting, Tampa, 24–28 June 2007, pp. 1-6. doi: 10.1109/ PES.2007.385982.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fa659db8-5b28-473f-897b-ce0ef68e9352
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.