Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 1 | art. no. e50, 2022
Tytuł artykułu

Studies on the behaviour of steel fibre-reinforced concrete under monotonic and repeated cyclic stress in compression

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Steel fibre-reinforced concrete (SFRC) has shown better performance behaviour with respect to the post-crack strength and in restricting the crack width and its propagation. Studies on behaviour of SFRC under repeated loading are a significant work. Behaviour of reinforced concrete structures during ground excitations in the form of earthquake forces could be significantly improved by addition of steel fibres in suitable dosage. Fibre type, aspect ratio, and dosage of fibres significantly influence the behaviour of steel fibre-reinforced concrete. Here, the work carried by various researchers with respect to the studies on the behaviour of SFRC under monotonic and cyclic stress in compression is presented. An experimental investigation on stress–strain characteristics of SFRC under monotonic loading in compression was carried, comprising M20 grade concrete, hooked-end steel fibres (l = 50 mm, diameter = 1 mm), and varying fibre dosages of 1.0, 1.25, 1.5, and 1.75% by volume of concrete. The stress–strain characteristics arrived based on the above experimental studies were compared with theoretical stress–strain characteristics, based on the equations proposed in literature. This served in understanding the behaviour of SFRC with respect to their stress–strain characteristics using experimental studies and by theoretical models, and analyse the extent of agreement and acceptance.
Wydawca

Rocznik
Strony
art. no. e50, 2022
Opis fizyczny
Bibliogr. 43 poz., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering, The National Institute of Engineering, Manandavadi Road, Mysore 570 008, India, jayantha.gk@gmail.com
  • Department of Civil Engineering, Vidya Vikas Institute of Engineering and Technology, Bannur Road, Alanahally, Mysore, Karnataka 570 028, India, vp.vviet@gmal.com
  • Department of Civil Engineering, The National Institute of Engineering, Manandavadi Road, Mysore 570 008, India, mysoreskylark@gmail.com
  • Department of Civil Engineering, The National Institute of Engineering, Manandavadi Road, Mysore 570 008, India, naveenbo@nie.ac.in
Bibliografia
  • 1. Koksal F, Ilki A, Tasdemir MA. Optimum mix design of steel-fiber reinforced concrete plates. Arab J Sci Eng. 2012. https://doi.org/10.1007/s13369-012-0468-y.
  • 2. Nagaraj TS, Banu Z. Generalisation of Abram’s law. Cem Concr Res. 1996;26:933–42.
  • 3. Nataraja MC, Nagaraj TS, Basavaraja SB. Reproportioning of steel fibre reinforced concrete mixes and their impact resistance. Cem Concr Res. 2005;35:2350–9. https://doi.org/10.1016/j.cemconres.2005.06.011.
  • 4. Swamy RN. Fibre reinforcement of cement and composite. Mater Constr. 1975;8:235–54.
  • 5. Spadea G, Bencardino F. Behavior of fiber-reinforced concrete beams under cyclic loading. J Struct Eng. 1997;123(5):660–8.
  • 6. Ou YC, Tsai MS, Liu KY, Chang KC. Compressive behavior of steel-fiber-reinforced concrete with a high reinforcing index. J Mater Civ Eng. 2012;24(2):207–15. https:// doi. org/ 10. 1061/(ASCE)MT.1943-5533.0000372.
  • 7. Bencardino F, Rizzuti L, Spadea G. Experimental tests vs. theoretical modeling for FRC in compression. 2007.
  • 8. de Oliveira Junior LA, dos Santos Borges VE, Danin AR, Machado DVR, de Lima Araújo D, El Debs MK, Rodrigues PF. Stress-strain curves for steel fibre-reinforced concrete in compression. Rev Matér. 2010;15(2):260–266. http://www.materia.coppe.ufrj.br/sarra/artigos/artigo11227.
  • 9. Birkimer DL. Fibrous concrete under dynamic tension. MS Thesis, University of Cincinnati, 1965.
  • 10. Pajak M, Ponikiewski T. Investigation on concrete reinforced with two types of hooked fibers under flexure. Proc Eng. 2017;193:128–35. https://doi.org/10.1016/j.proeng.2017.06.195.
  • 11. Bajan RL. Strength of steel fibre reinforced concrete with aggregate. Master’s thesis, Potsdam, New York, Clarkson College of Technology. 1965.
  • 12. Mckenny JL. Tensile strength of steel fibre reinforced concrete. Master’s thesis, Potsdam, New York, Clarkson College of Technology, May 1964.
  • 13. Thomas J, Ramaswamy A. Mechanical properties of steel-fiber reinforced concrete. J Mater Civ Eng. 2007;19(5):385–92.
  • 14. Irwin GR. Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech. 1957;24:361.
  • 15. Blaszczynski T, Przybylska-Falek M. Steel fiber reinforced concrete as a structural material. Proc Eng. 2015;122:282–9. https://doi.org/10.1016/j.proeng.2015.10.037.
  • 16. Low-cycle fatigue of fiber-reinforced concrete. Concrete Materials Research at Columbia University. http://www.columbia.edu/cu/civileng/meyer/download/lowcycle.pdf.
  • 17. El-Tawil S, Ogunc C, Okeil A, Shahawy M. Static and fatigue analyses of RC beams strengthened with CFRP laminates. J Compos Constr. 2001;5(4):258–67.
  • 18. Claire G Ball. The fatigue behaviour of steel fibre reinforced concrete. Master’s thesis, Potsdam, New York, Clarkson College of Technology, October 1967.
  • 19. Batson G, Ball C, Bailey L, Landers E, Hooks J. Flexural fatigue strength of steel fibre reinforced concrete beams. ACI. 1972;69(11):673–7.
  • 20. Ramey MR, McCabe PJ. Compression fatigue of fibre reinforced concrete. J Eng Mech Div. 1974;100(2):139–49.
  • 21. Gencoglu M, Eren I. An experimental study on the effect of steel fiber reinforced concrete on the behavior of the exterior beam-column joints subjected to reversal cyclic loading. Turk J Eng Environ Sci. 2002;26:493–502.
  • 22. Germano F, Plizzari GA. Post-peak cyclic behavior of steel fiber reinforced concrete under bending. HPFRCC RILEM. 2012;6:313–20.
  • 23. Ranjbaran F, Rezayfar O, Mirzababai R. Experimental investigation of steel fiber-reinforced concrete beams under cyclic loading. Int J Adv Struct Eng. 2018;10:49–60. https://doi.org/10.1007/s40091-018-0177-1.
  • 24. Aslani F, Jowkarmeimandi R. Stress-strain model for concrete under cyclic loading. Mag Concr Res. 2012;64(8):673–685. http://ro.uow.edu.au/engpapers/5251.
  • 25. Sima JF, Roca P, Molins C. Cyclic constitutive model for concrete. Eng Struct. 2008;30:695–706. https://doi.org/10.1016/j.engstruct. 2007.05.005.
  • 26. Yankelevsky DZ, Reinhardt HW. Model for cyclic compressive behaviour of concrete. J Struct Eng. 1987;113:228–40.
  • 27. Al-Sulayfani BJ, Al-Taee HT. Modeling of stress-strain relationship for fibrous concrete under cyclic loads. Eng Technol. 2008;26(1):45–54.
  • 28. Keer JG. Behaviour of cracked fibre-reinforced composite under limited cyclic loading. Int J Cem Compos Lightweight Concr. 1981;3(3):179–86.
  • 29. Azim M. A review of dynamic strength characteristics of unreinforced and fibre-reinforced concrete. ME Thesis, AIT. Bangkok, 1981; p. 109.
  • 30. Bencardino F, Rizzuti L, Spadea G, Swamy RN. Stress-strain behaviour of steel fibre-reinforced concrete in compression. J Mater Civ Eng. 2008;20(3):255–63. https:// doi. org/ 10. 1061/(ASCE)0899-1561(2008)20:3(255).
  • 31. Yoo DY, Kim S, Park GJ, Park JJ, Kim SW. Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites. Compos Struct. 2017;174:375–88. https://doi.org/10.1016/j.compstruct. 2017.04.069.
  • 32. Pikus GA. Steel fiber concrete mixture workability. Proc Eng. 2016;150:2119–23. https://doi.org/10.1016/j.proeng.2016.07.250.
  • 33. Tanigawa Y, Yamada K, Hatanaka S, Mori H. A simple constitutive model of steel fibre reinforced concrete. Int J Cem Compos Lightweight Concr. 1983;5:87–96. https://doi.org/10.1016/0262-5075(83)90022-2.
  • 34. Romualdi JP, Mandel JA. Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcements. J Am Concr Inst. 1964;61(6):657–70.
  • 35. Birkimer DL, Houssley JR. Comparison of static and dynamic behaviour of plain and fibrous reinforced concrete cylinders. Technical Report No. 4-69, Ohio River division labs, Corps of Engineers, Cincinnati, Ohio, Jan 1968.
  • 36. Carreira DJ, Chu KH. Stress-strain relationship for plain concrete in compression. ACI. 1985;82(6):797–804.
  • 37. Ruiz G, de la Rosa Á, Wolf S, Poveda E. Model for the compressive stress–strain relationship of steel fiber-reinforced concrete for non-linear structural analysis. Hormig Acero. 2018;69(S1):75–80. https://doi.org/10.1016/j.hya.2018.10.001.
  • 38. Lee S-C, Joung-Hwan Oh, Cho J-Y. Compressive behaviour of fibre-reinforced concrete with end-hooked steel fibres. Materials. 2015;8:1442–58. https://doi.org/10.3390/ma8041442.
  • 39. Nataraja MC, Dhang N, Gupta AP. Stress strain curve for steel-fiber reinforced concrete under compression. Cem Concr Compos. 1999;21(5–6):383–90.
  • 40. Someh AK, Saeki N. Prediction for the stress-strain curve of steel fiber reinforced concrete. Proc Jpn Concr Inst. 1994;18:1149–54.
  • 41. Mansur MA, Chin MS, Wee TH. Stress-strain relationship of high-strength fiber concrete in compression. J Mater Civ Eng. 1999;11(1):21–9.
  • 42. Ezeldin AS, Balaguru PN. Normal and high-strength fiber reinforced concrete under compression. J Mater Civ Eng. 1992;4(4):415–29.
  • 43. Soroushian P, Lee CD. Constitutive modelling of steel fibre reinforced concrete under direct tension and compression. In: Swamy RN, Barr B, editors. Fibre reinforced cements and concretes, recent developments. 1989; pp. 363–375.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fa5e5ad9-70df-4ed2-9283-10c559b991a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.