Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | Vol. 20, Fasc. 1 | 1--18
Tytuł artykułu

Upper bounds for the expected Jefferson rounding under mean-variance-skewness conditions

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A for the class of nonnegative random variables with given mean, variance, and skewness and support bound, we present a sharp upper bound for the expectation of rounding due to the Jefferson rule. The result gives an estimate for average extra gains due to rounding down payments. Arguments of four-dimensional geometric moment theory implemented in the proof provide tools for refined evaluations of rates of convergence of probability distributions and positive linear operators.
Wydawca

Rocznik
Strony
1--18
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • Institute of Mathematics, Polish Academy of Sciences, ul. Chopina 12, 87-100 Toruń, Poland
Bibliografia
  • [1] G. A. Anastassiou, Moments in Probability and Approximation Theory, Longman Sci. & Tech., Harlow, UK, 1993.
  • [2] G. A. Anastassiou and S. T. Rachev, Moments problems and their applications to characterization of stochastic processes, queueing theory, and rounding problem, in: Approximation Theory, Lecture Notes in Pure and Appl. Math. 138 (1992), pp. 1-77. 2 - PAMS 20.1
  • [3] G. A. Anastassiou and T. Rychlik, Moment problems on random rounding rules subject to two moment conditions, Comput. Math. Appl. 36, 1 (1998), pp. 9-19.
  • [4] G. A. Anastassiou and T. Rychlik, Prokhorov radius of a neighborhood of zero described by three moment constraints, J. Global Optim. 16 (2000), to appear.
  • [5] G. A. Anastassiou and T. Rychlik, Rates of uniform Prokhorov convergence of probability measures with given three moments to a Dirac one, Comput. Math. Appl. 38, 7-8 (1999), pp. 101-119.
  • [6] M. L. Baliński and S. T. Rache v, Rounding proportions: rules of rounding, Numer. Funct. Anal. Optim. 14 (1993), pp. 475-501.
  • [7] M. L. Baliński and H. P. Young, Fair Representation: Meeting the Ideal of One Man, One Vote, Yale Univ. Press, New Haven 1982.
  • [8] S. J. Karlin and W. J. Studden, Tchebycheff Systems: with Applications in Analysis and Statistics, Interscience, New York 1966.
  • [9] J. H. B. Kemperman, The general moment problem, a geometric approach, Ann. Math. Statist. 39(1968), pp. 93-122.
  • [10] F. Pukelsheim, Efficient rounding of sampling allocations, Statist. Probab. Lett. 35 (1997), pp. 141-143.
  • [11] H. Richter, Parameterfreie Abschätzung und Realisierung von Erwartungswerten, Blätter der Deutschen Gesellschaft für Versicherungsmathematik 3 (1957), pp. 147-161.
  • [12] W. W. Rogosinsky, Moments of non-negative mass, Proc. Roy. Soc. London Ser. A 245 (1958), pp. 1-27.
  • [13] T. Rychlik, The complete solution of a rounding problem under two moment conditions, in: Distributions with Given Marginals and Moment Problems, V. Benes and J. Stepán (Eds.), Kluwer Acad., Dordrecht 1996, pp. 15-20.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fa22453c-0125-47ea-940d-438af6f35cae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.