Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 20, nr 2 | 155-156
Tytuł artykułu

Wolfe-type second-order fractional symmetric duality

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, we examine duality results for Wolfe-type second-order fractional symmetric dual programs. These duality results are then used to investigate minimax mixed integer symmetric dual fractional programs. We also discuss self-duality results at the end.
Wydawca

Rocznik
Strony
155-156
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Department of Applied Mathematics, Indian School of Mines, Dhanbad 826 004, Jharkhand, India, anurag_jais123@yahoo.com
  • Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, 13 Septembrie Str., No. 13, 050711 Bucharest, Romania, stancu_minasian@yahoo.com
  • Department of Applied Mathematics, Indian School of Mines, Dhanbad 826 004, Jharkhand, India, ashishprasa@gmail.com
Bibliografia
  • [1] R. P. Agarwal, I. Ahmad, S. K. Gupta and N. Kailey, Generalized second-order mixed symmetric duality in nondifferentiable mathematical programming, Abstr. Appl. Anal. 2011 (2011), Article ID 103597.
  • [2] I. Ahmad, Multiobjective mixed symmetric duality with invexity, New Zealand J. Math. 34 (2005), 1-9.
  • [3] I. Ahmad, Second order symmetric duality in nondifferentiable multiobjective programming, Inform. Sci. 173 (2005), 23-34.
  • [4] A. I. Barros, Discrete and Fractional Programming Techniques for Location Models, Comb. Optim. 3, Kluwer Academic Publishers, Dordrecht, 1998.
  • [5] S. Chandra, A. Goyal and I. Husain, On symmetric duality in mathematical programming with F-convexity, Optimization 43 (1998), 1-18.
  • [6] A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European J. Oper. Res. 2 (1978), 429-444.
  • [7] W. S. Dom, A symmetric dual theorem for quadratic programs, J. Oper. Res. Soc. Japan 2 (1960), 93-97.
  • [8] T. R. Gulati and S. K. Gupta, Wolfe-type second-order symmetric duality in nondifferentiable programming, J. Math. Anal. Appl. 310 (2005), 247-253.
  • [9] S. K. Gupta and N. Kailey, A note on multiobjective second-order symmetric duality, European J. Oper. Res. 201 (2010), 649-651.
  • [10] D. S. Kim, H. J. Lee and Y. J. Lee, Generalized second order symmetric duality in nondifferentiable multiobjective programming, Taiwanese J. Math. 11 (2007), 745-764.
  • [11] P. Mandal and C. Nahak, Symmetric duality with (p, r) - p – (η, θ)-invexity, Appl. Math. Comput. 217 (2011), 8141-8148.
  • [12] S. K. Mishra, Second order symmetric duality in mathematical programming with F-convexity, European J. Oper. Res. 127 (2000), 507-518.
  • [13] B. Mond, A symmetric dual theorem for non-linear programs, Z. Oper. Res. 29 (1964), 59-64.
  • [14] B. Mond, Second order duality for nonlinear programs, Opsearch 11 (1974), 90-99.
  • [15] S. Pandey, Duality in multiobjective fractional programming involving generalized »j-bonvex functions, Opsearch 28 (1991), 36-43.
  • [16] I. M. Stancu-Minasian, Fractional Programming: Theory, Methods and Applications, Math. Appl. 409, Kluwer Academic Publishers, Dordrecht, 1997.
  • [17] I. M. Stancu-Minasian, A sixth bibliography of fractional programming, Optimization 55 (2006), 405-428.
  • [18] S. K. Suneja, C S. Lalitha and S. Khurana, Second-order symmetric duality in multiobjective programming, European J. Oper. Res. 144 (2003), 492-500.
  • [19] A. K. Tripathy and G. Devi, Second order multiobjective mixed symmetric duality containing square root term with generalized invex function, Opsearch 50 (2013), 260-281.
  • [20] K. Verma and T. R. Gulati, Second order symmetric duality in nondifferentiable multiobjective programming under invexityj. Inf. Oper. Manag. 3 (2012), 250-253.
  • [21] X. M. Yang, X. Q. Yang and K. L. Teo, Non-differentiable second order symmetric duality in mathematical programming with F-convexity, European J. Oper. Res. 144 (2003), 554-559.
  • [22] X. M. Yang, X. Q. Yang, K. L. Teo and S. H. Hou, Multiobjective second-order symmetric duality with F-convexity, European J. Oper. Res. 165 (2005), 585-591.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fa188412-2da6-4a47-a1a7-1cd8304a04b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.