Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 47, nr 1 | 75--82
Tytuł artykułu

Microstructure evaluation of the Al-Ti alloy with magnesium addition

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Effects of magnesium additions to Al alloy with 2% Ti addition on the microstructure, phase morphology and distribution and mechanical properties were investigated. Here are presented mainly microstructure changes after solution heat treatment concerning mainly grain uniformity and intermetallic phases of the aluminium - titanium alloy with a content of 2 and 4 % of magnesium addition. The purpose of this work was also to determine the solution heat treatment conditions of the investigation alloys. Design/methodology/approach: The reason of this work was to determine the heat treatment parameters influence, particularly SHT temperature and time onto the changes of the microstructure of the investigated material, as well to determine which intermetallic phases occur after the heat treatment performed, and how is the particles morphology in as cast state compared to structure after heat treatment. Findings: After solution heat treatment for 4 hours the structure changes in a significant way. The grains are larger and no more uniform as in the as cast state. The most stable intermetallic in the Al-Ti system is the Al3Ti phase. The solution heat treatment time should be greater than 4 hours to ensure a proper solution of titanium and magnesium in the Al-a solid solution. Research limitations/implications: The investigated aluminium samples were examined metallographically using optical microscope with different image techniques, scanning electron microscope and also analyzed using a Vickers micro-hardness tester, also EDS microanalysis was carried out. Practical implications: As an implication for the practice an alloy can be developed with increased properties, which could be of great interest for the automotive or aerospace industry. There are existing many different investigation areas and the knowledge found in this research shows one of interesting investigation direction. Originality/value: The combination of light weight and high strength achieved in the Al-Ti alloys is very attractive for aerospace and automotive industries. Addition of magnesium into the Al-Ti alloy could help also to reveal the existence new unknown phases.
Słowa kluczowe
Wydawca

Rocznik
Strony
75--82
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science,Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, krzysztof.labisz@polsl.pl
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science,Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • TurboCare Poland S.A., ul. Powstańców Śląskich 85, 42-701 Lubliniec, Poland
autor
  • Structural Physics, Centre for Materials Science, University of Oslo, Gaustadtalleen 21, N-0349 Oslo, Norway
Bibliografia
  • [1] K. Labisz, M. Krupiński, L.A. Dobrzański, Phases morphology and distribution of the Al-Si-Cu alloy, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 309-316.
  • [2] L.A. Dobrzański, K. Labisz, R. Maniara, A. Olsen, Microstructure and mechanical properties of the Al-Ti alloy with cerium addition, Worldwide Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 622-629.
  • [3] J. Djuricic, S. Boro, G. Pickering, P. Stephen, Nanostructured cerium oxide: preparation and properties of weakly-agglomerated powders, Journal of the European Ceramic Society 19/11 (1999) 1925-1934.
  • [4] D.Y. Maeng, J.H. Lee, S.I. Hong, The effect of the transitions elements on the superplastic behavior of Al-Mg alloys, Materials Science and Engineering 357/1-2 (2003) 188-195.
  • [5] M. Beschliesser, H. Clemens, H. Kestler, F. Jeglitsch, Phase stability of a c-TiAl based alloy upon annealing: comparison between experiment and thermodynamic calculations, Scripta Materialia 49 (2003) 279-284.
  • [6] K. Ozturuk, L.Q. Chen, Z.K. Liu, Thermodynamic assessment of the Al-Ca binary system using random solution and associate models, Journal of Alloy and Compounds 340/1-2 (2003) 199206.
  • [7] J. Szajnar, T. Wróbel, Inoculation of primary structure of pure aluminium, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 283-286.
  • [8] P. Villars, A. Prince, H. Okamota, Handbook of Ternary Alloy Phase Diagram, vol. IV, ASM, 1995.
  • [9] M. Krupiński, K. Labisz, Z. Rdzawski, M. Pawlyta, Cooling rate and chemical composition influence on structure of Al-Si-Cu alloys, Journal of Achievements in Materials and Manufacturing Engineering 45/1 (2011) 13-22.
  • [10] P.L. Schaffer, A.K. Dahle, Settling behaviour of different grain refiners in aluminium, Materials Science and Engineering 413414 (2005) 373-378.
  • [11] P. Villars, L.D. Cavert, Pearson’s handbook of crystallo-graphic data for intermetallic phases, vol. 2, ASM, 1991.
  • [12] T. Tański, K. Labisz, L.A. Dobrzański, Effect of Al additions and heat treatment on corrosion properties of Mg-Al based alloys, Journal of Achievements in Materials and Manufacturing Engineering 44/1 (2011) 64-72.
  • [13] M. Krupiński, K. Labisz, L.A. Dobrzański, Z. Rdzawski, Image analysis used for aluminium alloy microstructure investigation, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 58-65.
  • [14] M. Krupiński, K. Labisz, L.A. Dobrzański, Z. Rdzawski, Computer aided microstructure analysis of the Al-Si-Cu cast alloy cooled with different cooling rates, Proceedings of the 13th “International Materials Symposium” IMSP’2010, Denizli, 2010, 724-730.
  • [15] M. Krupiński, K. Labisz, L.A. Dobrzański, Z. Rdzawski, Derivative thermo-analysis application to assess the cooling rate influence on the microstructure of Al-Si alloy cast, Journal of Achievements in Materials and Manufacturing Engineering 38/2 (2010) 115-122.
  • [16] Y. Han, D. Shu, J. Wang, B. Sun, Microstructure and grain refining performance of Al-5Ti-1B masteralloy prepared under high-intensity ultrasound, Materials Science and Engineering A 430 (2006) 326-331.
  • [17] L.A. Dobrzański, K. Labisz, R. Maniara, Microstructure investigation and hardness measurement in Al-Ti alloy, Proceedings of the 13th Scientific International Conference „Achievements in Mechanical and Materials Engineering” AMME’2005, Zakopane, 2005, 161-166.
  • [18] X. Wang, A. Jha, R. Brydson, In situ fabrication of Al3Ti particle reinforced aluminium alloy metal-matrix composites, Materials Science and Engineering A 364 (2004) 339-345.
  • [19] V. Maurice, G. Despert, S. Zanna, P. Josso, M.-P. Bacos, P. Marcus, XPS study of the initial stages of oxidation of a2-Ti3Al and c-TiAl intermetallic alloys, Acta Matrialia 55 (2007) 3315-3325.
  • [20] L.A. Dobrzański, M. Król, T. Tański, Effect of cooling rate and aluminum contents on the Mg-Al-Zn alloys’ structure and mechanical properties, Journal of Achievements in Materials and Manufacturing Engineering 43 (2010) 613-633.
  • [21] G. Mrówka-Nowotnik, J. Sieniawski, M. Wierzbińska, Intermetallic phase particles in 6082 aluminium alloy, Archives of Materials Science and Engineering 28 (2007) 69-76.
  • [22] L.A Dobrzański, K. Labisz, A. Olsen, P. Zgierski, Precipitation processes during heat treatment of the Al-Mg-Cu-Zn alloy for car chassis, Proceedings of the 10th Jubilee Scientific International Conference „Achievements in Mechanical and Materials Engineering” AMME’2001, Zakopane, 2001, 645-650 (in Polish).
  • [23] P. Švančárek, D. Galusek, F. Loughran, A. Brown, R. Brydson, A. Atkinson, F. Riley, Microstructure-stress relationships in liquid-phase sintered alumina modified by the addition of 5 wt.% of calcia-silica additives, Acta Materialia 54 (2006) 4853-4863.
  • [24] L.A. Dobrzański, M. Krupiński, K. Labisz, B. Krupińska, A Grajcar, Phases and structure characteristics of the near eutectic Al-Si-Cu alloy using derivative thermo analysis, Materials Science Forum 638-642 (2010) 475-480.
  • [25] L.F. Mondolfo, Aluminium alloys structure and properties, Butterwortha, London, 1976.
  • [26] P. Ashraf, P. Muhamed, S.M.A. Shibli, Development of cerium oxide and nickel oxide-incorporated aluminium matrix for marine applications, Journal of Alloys and Compounds 484/1-2 (2009) 477-482.
  • [27] C. Weiping, Diffusion of cerium in the aluminium lattice, Journal of Materials Science Letters 16/22 (1997) 1824-1826.
  • [28] A. Pardo, S. Feliu, M.C. Merino, R. Arrabal, E. Matykina, The effect of cerium and lanthanum surface treatments on early stages of oxidation of A361 aluminium alloy at high temperature, Applied Surface Science 254/2 (2007) 586-595.
  • [29] A. de Frutos, M.A. Arenas, Y. Liu, P. Skeldon, G.E. Thompson, J. de Damborenea, A. Conde, Influence of pre-treatments in cerium conversion treatment of AA2024-T3 and 7075-T6 alloys, Surface & Coatings Technology 202 (2008) 3797-3807.
  • [30] M.F. Montemor, A.M. Simões, M.J. Carmezim, Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection, Applied Surface Science 253/16 (2007) 6922-6931.
  • [31] T. Dhannia, S. Jayalekshmi, M.C. Santhosh Kumar, T. Prasada Rao, A. Chandra Bose, Effect of aluminium doping and annealing on structural and optical properties of cerium oxide nanocrystals, Journal of Physics and Chemistry of Solids 70/11 (2009) 1443-1447.
  • [32] A. Decroly, C. André, J. Petitjean, J. Jean-Pierre, Study of the deposition of cerium oxide by conversion on to aluminium alloys, Surface and Coatings Technology 194/1 (2005) 1-9.
  • [33] A. Włodarczyk-Fligier, M. Adamiak, L.A. Dobrzański, Corrosion resistance of the sintered composite materials with the EN AW-AlCu4Mg1(a) alloy matrix reinforced with ceramic particles, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 120-126.
  • [34] L.A. Dobrzanski, M. Kremzer, A.J. Nowak, A. Nagel, Aluminium matrix composites fabricated by infiltration method, Archives of Materials Science and Engineering 36/1 (2009) 5-11.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f9e54d9f-32b0-4e01-ad74-12de9cf3d5d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.