Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 45, no 2 | 269--277
Tytuł artykułu

Thermophysical properties and microstructure of 32CrMoV12-28 hot-work tool steel

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Measurements of thermal diffusivity, heat capacity and thermal expansion of hot work tool steel 32CrMoV12-28 have been carried out in the temperature range from room temperature (RT) to 1000℃. 32CrMoV12-28 steel has been tested for military applications as steel for gun barrels. The thermophysical properties of this steel can be used as input data for numerical simulations of heat transfer in gun barrels. Both the LFA 427 laser flash apparatus in the RT 1000℃ temperature range and the LFA 467 light flash apparatus in the RT 500℃ temperature range were used for thermal diffusivity tests. Specific heat capacity was investigated in the range RT 1000℃. The specific heat was determined by two methods, i.e. the classical method, the so-called continuous-scanning method and the stepwise-scanning method according to EN ISO 11357-4. The paper compares both methods and assesses their suitability for testing the specific heat capacity of barrel steels. Thermal expansion was investigated in the range RT 1000℃. Inconel 600 was selected as the reference material during the thermal diffusivity test using LFA 467. Light microscopy (LM), scanning electron microscopy (SEM), and Vickers microhardness measurements were performed to detect changes in the microstructure before and after thermophysical measurements. We compared the results of measurements of the thermophysical properties of 32CrMoV12-28 steel with the results of our tests for other barrel steels with medium carbon content, i.e. X37CrMoV5-1 (1.2343), 38HMJ (1.8509) and 30HN2MFA. The comparison was made in terms of shifting the effect of material shrinkage towards higher temperatures.
Wydawca

Rocznik
Strony
269--277
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland, judyta.sienkiewicz@wat.edu.pl
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Sopok, S., Rickard, C., & Dunn, S. (2005). Thermal-chemicalmechanical gun bore erosion of an advanced artillery system part one: Theories and mechanisms. Wear, 258(5-6), 659–670. doi:10.1016/j.wear.2004.09.031
  • [2] Sopok, S., Rickard, C., & Dunn, S. (2005). Thermal–chemical– mechanical gun bore erosion of an advanced artillery system part two: Modeling and predictions. Wear, 258(5-6), 671–683. doi:10.1016/j.wear.2004.09.030
  • [3] Li, H., Chen, G., Zhang, K., Luo, G., & Ye, Z. (2007). Degradation failure features of chromium-plated gun barrels with a laserdiscrete-quenched substrate. Surface and Coatings Technology,201(16-17), 9558–9564. doi: 10.1016/j.surfcoat.2007.04.034
  • [4] Sarraf, S. H., Soltanieh, M., & Aghajani, H. (2016). Repairing the cracks network of hard chromium electroplated layers using plasma nitriding technique. Vacuum, 127, 1–9. doi: 10.1016/j.vacuum.2016.02.001
  • [5] Dębski, A., Surma, Z., & Koperski, W. (2009). Material and technological optimization research in terms of increasing the durability of small arms. Journal of Physics: Conference Series, 2628, 012035. doi: 10.1088/1742-6596/2628/1/012035
  • [6] Bhadeshia, H.K.D.H. (2021). Theory of transformations in steels. Boca Raton: CRC Press.
  • [7] Blicharski, M. (2017). Inżynieria materiałowa: Stal (2nd ed., 1st reprint). Warszawa: Wydawnictwo WNT. ISBN 9788301189556.
  • [8] Koniorczyk, P., Zmywaczyk, J., Dębski, A., Zieliński, M., Preiskorn, M., & Sienkiewicz, J. (2020). Investigation of thermophysical properties of three barrel steels. Metals, 10(5), 573. doi:10.3390/met10050573
  • [9] Koniorczyk, P., Zmywaczyk, J., Dębski, A., Zieliński, M., & Cegła, M. (2019). Investigations of thermal diffusivity and thermal expansion for three types of barrel steel. Thermophysics 2019: 24th International Meeting of Thermophysics and 20th Conference REFRA (p. 20006). Smolenice, Slovakia, AIP Publishing.
  • [10] Koniorczyk, P., Zieliński, M., Sienkiewicz, J., Zmywaczyk, J., & Dębski, A. (2023). Experimental studies of thermophysical properties and microstructure of X37CrMoV5-1 hot-work tool steel and maraging 350 steel. Materials, 16(3), 1206. doi: 10.3390/ma16031206
  • [11] Kaschnitz, E., Hofer-Hauser, P., & Funk, W. (2020). Electrical resistivity measured by millisecond pulse-heating in comparison to thermal conductivity of the hot work tool steel AISI H11 (1.2343) at elevated temperature. High Temperatures-High Pressures: Thermophysical Properties: Fundamentals and Applications, 49, 75–87. doi: 10.32908/hthp.v49.825
  • [12] Souza, S. d. S. d., Moreira, P.S., & Faria, G.L. d. (2020). Austenitizing temperature and cooling rate effects on the martensitic transformation in a microalloyed-steel. Materials Research, 23, 322. doi: 10.1590/1980-5373-MR-2019-0570
  • [13] Coll Ferrari, M.T. (n.d.). Effect of austenitising temperature and cooling rate on microstructures of hot-work tool steels. https://www.diva-portal.org/smash/get/diva2:868510/ FULLTEXT01.pdf [accessed 27 Oct. 2023].
  • [14] Tewari, R., Mazumder, S., Batra, I.S., Dey, G.K., & Banerjee, S. (2000). Precipitation in 18 wt% Ni maraging steel of grade 350. Acta Materialia, 48, 1187–1200. doi: 10.1016/S1359-6454(99)00370-5
  • [15] Guo, Z., Sha, W., & Li, D. (2004). Quantification of phase transformation kinetics of 18 wt.% Ni C250 maraging steel. Materials Science and Engineering: A, 373, 10–20. doi: 10.1016/ j.msea.2004.01.040
  • [16] Jarfors, A.E.W., Matsushita, T., Siafakas, D., Stolt, R. (2021). On the nature of the anisotropy of Maraging steel (1.2709) in additive manufacturing through powder bed laser-based fusion processing. Materials & Design, 204, 109608. doi: 10.1016/ j.matdes.2021.109608
  • [17] Kapoor, R., Kumar, L., & Batra, I.S. (2003). A dilatometric study of the continuous heating transformations in 18wt.% Ni maraging steel of grade 350. Materials Science and Engineering: A, 352,318–324. doi: 10.1016/S0921-5093(02)00934-6
  • [18] Koniorczyk, P., Sienkiewicz, J., Zmywaczyk, J., Dębski, A., Zieliński, M., & Preiskorn, M. (2021). Effect of microstructure on thermophysical properties of heat-treated duplex steel. Materials (Basel), 14(20), 6043. doi: 10.3390/ma14206043
  • [19] Knyazeva, M., & Pohl, M. (2013). Duplex Steels: Part I: Genesis, Formation, Structure. Metallography, Microstructure, and Analysis, 2, 113–121. doi: 10.1007/s13632-013-0066-8
  • [20] Knyazeva, M., & Pohl, M. (2013). Duplex Steels. Part II: Carbides and Nitrides. Metallography, Microstructure, and Analysis, 2, 343–351. doi: 10.1007/s13632-013-0088-2
  • [21] Chen, H., Yue, Z., Ren, D., Zeng, H., Wei, T., Zhao, K., Yang, R., Qiu, P., Chen, L., & Shi, X. (2019). Thermal conductivity during phase transitions. Advanced Materials, 31(51), e1806518. doi:10.1002/adma.201806518
  • [22] Zieliński, M., Koniorczyk, P., Surma, Z., Zmywaczyk, J., & Preiskorn, M. (2022). Numerical study of heat transfer in a gun barrel made of selected steels. Energies, 15(5), 1868. doi: 10.3390/en15051868
  • [23] Fikus, B., Dorochowicz, A., Surma, Z., Kijewski, J., Leciejewski, Z., Michalski, J., & Trębiński, R. (2022). Investigations of middle-caliber anti-aircraft cannon interior ballistics including heat transfer problem in estimation of critical burst length. Processes,10(3), 607. doi: 10.3390/pr10030607
  • [24] Dębski, A., Koniorczyk, P., Leciejewski, Z., Preiskorn, M., Surma, Z., & Zmywaczyk, J. (2016). Analysis of heat transfer in a 35 mm barrel of an anti-aircraft cannon. Problems of Mechatronics: Armament, Aviation, Safety Engineering, 7, 71–86. doi:10.5604/01.3001.0009.2983
  • [25] Fikus, B., Surma, Z., Leciejewski, Z., & Trębiński, R. (2022). Influence of relations defining propellant gases-barrel heat transfer on critical burst length of 35 mm anti-aircraft cannon. Proceedings of the 32nd International Symposium on Ballistics, May 9-13, 2022 (pp. 71–86). DEStech Publications.
  • [26] Zieliński, M., Koniorczyk, P., Surma, Z., Preiskorn, M., & Sienkiewicz, J. (2023). Selected aspects of heat transfer study in a gun barrel of an anti-aircraft cannon. Problems of Mechatronics: Armament, Aviation, Safety Engineering, 14, 73–86. doi: 10.5604/01.3001.0053.6672
  • [27] Koniorczyk, P., Zieliński, M., & Surma, Z. (2023). Heat transfer in the anti-aircraft gun barrel during fire with training and combat ammunition – Comparison of calculation results. Issues of Armament Technology, 165(3), 23–39. doi: 10.5604/01.3001.0053.9191
  • [28] Zieliński, M., & Koniorczyk, P. (2023). Thermophysical properties of selected barrel steels. Issues of Armament Technology,164(2), 19–41. doi: 10.5604/ 01.3001.0053.7229
  • [29] Mesquita, R. A. (2016). Tool steels. CRC Press. ISBN 9781439881729.
  • [30] Cape, J.A., & Lehman, G.W. (1963). Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity. Journal of Applied Physics, 34(7), 1909–1913. doi:10.1063/1.1729711
  • [31] Netzsch. (2023). Proteus ver. 7.1 software manual. https://www.netzsch-thermal-analysis.com/en/products-solutions/software/proteus/ (accessed 27 Oct. 2023).
  • [32] Ling, S.J., Sanny, J., & Moebs, W. (2018). University physics,vol. 2. OpenStax, Rice University
  • [33] Schindler, A. (2023). “Stepwise” According to EN ISO 11357-4. https://analyzing-testing.netzsch.com/_Resources/Persistent/3/0/4/8/3048e6366e9773455694482cc4f15f72da7d65bd/SW%20Innovation%20014_English.pdf [accessed 27 Oct. 2023].
  • [34] Zieliński, M., & Koniorczyk, P. (2023). Thermal diffusivity and thermal expansion investigations of WLV steel. Journal of Physics: Conference Series, 2628(1), 012035. doi: 10.1088/1742-6596/2628/1/012035
  • [35] Chadha, K., Shahriari, D., Aranas, C., Lapierre-Boire, L.-P., & Jahazi, M. (2019). On the role of chromium in dynamic transformation of austenite. Metals and Materials International, 25,559–569. doi: 10.1007/s12540-018-00227-6
  • [36] Jirková, H., Kučerová, L., & Mašek, B. (2015). The effect of chromium on microstructure development during Q-P process. Materials Today: Proceedings, 2, 627-630. doi: 10.1016/ j.matpr.2015.07.362
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f9d50d09-fd53-44c3-909e-4827d6d93568
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.