Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 5 | 342--360
Tytuł artykułu

Determination of Hole Blocking Conditions for Perforated Sifting Surfaces

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The efficiency of widespread technological processes of sieve sifting of loose materials depends on timely cleaning of holes from the blocked particles. The blocking of holes occurs under specific conditions related to mechanical-and-physical properties of loose material particles, constructive and technological parameters of perforated sifting surfaces and clean-up systems. We established the conditions that contribute to blocking of holes of sifting surfaces and identified all significant factors, namely size, mass, constant of friction and Young's modulus for loose material particles; form and size of hole, thickness of perforated surface; loose material layer thickness and velocity. Using analytical and experimental methods, we identified variation range of these factors for loose material particles of biological origin, such as buckwheat, wheat, peas, corn. As a result of this study, we received analytical equations for determination of force of adhesion of loose materials particles with the edge of holes of perforated surfaces. The numeric calculations allowed establishing the dependence of the force of adhesion on moisture and thickness of loose material layer, as well as thickness and shape of the holes of the perforated surfaces. We have also established the dependence of constant of friction, mass, Young's modulus from the moisture of particles of loose material. The obtained results make it possible to determine the force of adhesion and prediction the power necessary for unblocking this hole, created by the cleaning system elements, such as brushes and elastic impact cleaners. The use of this method will make it possible to justify the parameters of the system for cleaning holes of perforated sifting surfaces with different types of holes and when separating different types of loose materials.
Wydawca

Rocznik
Strony
342--360
Opis fizyczny
Bibliogr. 51 poz., fig., tab.
Twórcy
  • Sumy National Agrarian University, ul. Herasyma Kondratieva 160 Street, Sumy, 40000, Ukraine
Bibliografia
  • 1. Obraniak A, Gluba T. A model of granule porosity changes during drum granulation. Physicochemical Problems of Mineral Processing 2011, 46: 219–228.
  • 2. Obraniak A, Gluba T. Model of energy consumption in the range of nucleation and granule growth in drum granulation of bentonite. Physicochemical Problems of Mineral Processing 2012, 48. 1: 121–128.
  • 3. Makinde O, Ramatsetse B, Mpofu K. Review of vibrating screen development trends: Linking the past and the future in mining machinery industries. International Journal of Mineral Processing 2015, 145: 17–22, https://doi.org/10.1016/j.minpro.2015.11.001
  • 4. Kharchenko S, Kovalyshyn S, Zavgorodniy A, Kharchenko F, Mikhaylov Y. Effective sifting of flat seeds through sieve. INMATEH-Agricultural Engineering 2019, 58(2): 17–26. https://doi. org/10.35633/INMATEH-58-02
  • 5. Peng L, Feng H, Wang Z, Wang H, Yang H, Huang H. Screening mechanism and properties of a cantilevered vibrating sieve for particles processing. Appl. Sci. 2019, 9: 4911. https://doi.org/10.3390/app9224911
  • 6. Dong K, Esfandiary AH, Yu AB. Discrete particle simulation of particle flow and separation on a vibrating screen: Effect of aperture shape. Powder Technology 2017, 314: 195–202. https://doi. org/10.1016/j.powtec.2016.11.004
  • 7. Kharchenko S. Intensification of grain sifting on flat sieves of vibration grain separators. Monograph; Dissa Plus: Kharkiv, 2017, 217.
  • 8. Ławińska K, Wodziński P. Oczyszczanie sit przesiewaczy. Surowce i Maszyny Budowlane 2011, 2, 46–50.
  • 9. Zexin Xu, Yonglei Li, Lipengcheng Wan, Xiang Ma, Jiannong Song, Jinqiu Huang. Optimising the design of ball racks to improve the sorting efficiency of vibrating screen seed cleaners using discrete element method modelling and experiment. Biosystems Engineering 2023, 225: 99–117, https:// doi.org/10.1016/j.biosystemseng.2022.12.006
  • 10. Ławińska K, Modrzewski R. Metody oczyszczania sit przesiewaczy przemysłowych. Technologia i Jakość Wyrobów 2016, 61: 80–85.
  • 11. Ławińska K, Modrzewski R. Przesiewanie i maszyny przesiewające z uwzględnieniem procesu blokowania otworów sitowych: monografia IPS, 2016.
  • 12. Kharchenko S., Samborski S., Kharchenko F. Factors of technological efficiency and reliability of elastic cleaners of vibrating sieves. Proceedings of WECM’23, Pisa, September 2023, 20–22.
  • 13. Ławińska K. Proces blokowania otworów sitowych przesiewaczy stosowanych w przeróbce mechanicznej kopalin użytecznych. Technologia i Jakość wyrobów 2015, 60: 68–75.
  • 14. Ławińska K, Remigiusz M, Piotr W. Mathematical and empirical description of screen blocking. Granular Matter 2016, 18: 13. https://doi.org/10.1007/ s10035-016-0622-4
  • 15. Piecuch T, Pekarski J, Malatyńska G. The equation describing the filtration process with compressible sediment accumulation on a filter mesh. Archives of Environmental Protection. 2013, 39(1): 93–104.
  • 16. Gawenda T. Comparative analysis of mobile and stationary technological sets for screening and grinding. Annual Set the Environment Protection 2013, 15.
  • 17. Feller R. Screening analysis considering both passage and clogging. Trans. ASAE. 1980, 23(4): 1054–1056.
  • 18. Zavgorodny A. Sieve cleaning in grain-cleaning machines: monograph. Kiev: USDA, 1992, 179.
  • 19. Zavgorodny O. Scientific bases of the processes of cleaning the sieve holes of grain cleaning machines: monograph. Kharkiv: Osnova, 2001, 163.
  • 20. Romanyuk N, Ednach V, Bondarenko D, Tikhonov E, Karnaukhov A, Butenko A, Sokolova V. Improvement of devices for cleaning sieves of grain cleaning machines. AIP Conference Proceedings. 2022, 2767: 020005. https://doi.org/10.1063/5.0127256
  • 21. Zavgorodny A, Dyundik S, Romanov V. On the influence of the working bodies of cleaners on the throughput capacity of sieves. Technology of production and design of agricultural machinery 1997, 70–78.
  • 22. Li Y, Xu Z, Wan L, Zhao H, Chen H, Song J. Impulsive force simulation of the rubber ball sievecleaning device for batch seed cleaners. Transactions of the Chinese Society of Agricultural Engineering 2021, 37(20): 23e33. https://doi.org/ 10.11975/j. issn.1002-6819.2021.20.003
  • 23. Zexin Xu, Yonglei Li, Lipengcheng Wan, Xiang Ma, Jiannong Song, Jinqiu Huang. Optimising the design of ball racks to improve the sorting efficiency of vibrating screen seed cleaners using discrete element method modelling and experiment. Biosystems Engineering 2023, 225: 99–117, https:// doi.org/10.1016/j.biosystemseng.2022.12.006
  • 24. Tishchenko L, Kharchenko S, Kharchenko F, Bredykhin V, Tsurkan O. Identification of a mixture of grain particle velocity through the holes of the vibrating sieves grain separators. Eastern-European Journal of Enterprise Technologies 2016, 2(80): 63– 69. https://doi.org/10.15587/1729-4061.2016.65920
  • 25. Kaliniewicz Z, Grabowski A, Liszewski A, Fura S. Analysis of correlations between selected physical attributes of Scots pine seeds. Technical Sci. 2011, 14(1): 13–22.
  • 26. Method for identifying the sizes and shapes of biological objects / S. Kharchenko, S. Samborski, F. Kharchenko, I. Korzec: WECM’23, Pisa, September 2023, 20–22.
  • 27. Trotsenko V, Trotsenko I. Ways to reduce mechanical damage of barley for mechanical processing. Journal of Physics: Conference Series. 2019, 1260: 112030. doi.org/10.1088/1742-6596/1260/2/022003
  • 28. Zhang H, Liu X, Liu S, Jiang H, Xu C, Wang J. Prediction Model of Dry Fertilizer Crushing Force Based on P-DE-SVM. ACS Omega 2021, 6(5): 3612–3624. doi.org/10.1021/acsomega.0c05120
  • 29. Rozhkovsky M. To determine the mechanism of deformation and destruction of grain materials. Bulletin of Agricultural Science 2000, 7: 50–53.
  • 30. Bo W, Jun W. Mechanical properties of maize kernel horny endosperm, floury endosperm and germ. International Journal of Food Properties 2019, 22(1): 863–877.
  • 31. Trotsenko V, Trotsenko I, Komendantova N, Babariko A. The grain parameters determination based on elements of the elasticity theory. IOP Conf. Series: Earth and Environmental Science 2021, 659: 012065. doi:10.1088/1755-1315/659/1/012065
  • 32. Kharchenko S, Pankova O, Kharchenko F, Syrovytskyi K, Shulyak M, Zubko V, Sokolik S. Scientific and technical substantiation of technology for improving the biopotential of crops: monograph, Kharkiv 157, 2023.
  • 33. Nader J, Assaf JC, Debs E, Louka N. Innovative Method for Determining Young’s Modulus of Elasticity in Products with Irregular Shapes: Application on Peanuts. Processes 2023, 11: 2532. https://doi.org/10.3390/pr11092532.
  • 34. Özarslan C. Physical properties of sweet corn seed (Zea mays saccharata Sturt.). J. Food Eng. 2006, 74: 523–528.
  • 35. Gorji A, Rajabipour A, Tavakoli H. Fracture Resistance of Wheat Grain as a Function of Moisture Content, Loading Rate and Grain Orientation. Aust. J. Crop Sci. 2010, 4: 448–452.
  • 36. Bakharev D, Volvak S, Pastukhov A. Bionic principles of designing threshing and separating systems for corn cobs: monograph. Publishing House of FSBEI HE, Maysky village, 2018, 168.
  • 37. Bakharev D, Pastukhov A, Volvak S, Dobrickiy A. Methodology and results of experimental determination of corn grain elasticity modulus. Engineering for rural development 2021. Jelgava, 26.–28.05.2021. doi. org/10.22616/ERDev.2021.20.TF019
  • 38. Fei D, Wu YZ, Han ZS, Zhang FW. Experiment on Poisson’s ratio determination about corn kernel. Proceedings of 3rd International Conference on Chemical Engineering and Advanced, Trans Tech Publications, 2013, 781–784, 799–802, Switzerland.
  • 39. Kaliniewicz Z, Markowski P, Anders A, Jadwisieńczak K. Frictional properties of selected seeds. Technical Sciences 2015, 18(2): 85–101.
  • 40. Jouki M, Khazaei N. Some Physical properties of rice seed (Oriza sativa). Res. J. Appl. Sci. Eng. Technol. 2012, 4(13): 1846–1849.
  • 41. Riyahi R, Rafiee S, Dalvand MJ, Keyhani A. Some physical characteristics of pomegranate seeds and arios. J. Agric. Tech. 2011, 7(6): 1523–1537.
  • 42. Kabas O, Yilmaz E, Ozmerzi A, Akinci İ. Some physical and nutritional properties of cowpea seed (Vigna simensis L.). J. Food Eng. 2007, 79: 1405–1409.
  • 43. Kaliniewicz Z. Analysis of frictional properties of cereal seeds. African Journal of Agricultural Research 2013, 8: 5611–5621. doi.org/10.5897/AJAR2013.7361.
  • 44. Sologubik CA, Campan one LA, Pagano AM, Gely MC. Effect of moisture content on some physical properties of barley. Industrial Crops and Products 2013, 43: 762–767.
  • 45. Stankevych GM, Katz AK, Vasiliev SV, Gaponiuk OI. Characterization of physical and mechanical properties of spelt grain. Scientific Proceedings of Odesa National Academy of Food Technologies 2019, 83, 2: 50–56.
  • 46. Leibenzon LS. Variational Methods for Solving Problems in the Theory of Elasticity. Gostekhizdat, 1943, 286.
  • 47. Simona De Cicco. On the deformation of porous spherical bodies under radial surface traction. Journal of theoretical and applied mechanics 2023, 61, 2: 305– 316. https://doi.org/10.15632/jtam-pl/161477
  • 48. Kharchenko S., Samborski S., Kharchenko F., Korzec I., Zubko V. Dynamics of loose medium on vibrosieves with riffles and holes of complex geometry. Proceedings of 5th Polish Congress of Mechanics, Gliwice, September 4–7, 2023.
  • 49. Gorroochurn P. Some laws and problems of classical probability and how Cardano anticipated them. Change 2012, 25(4): 13–20.
  • 50. Lestari K, Pasaribu U, Indratno S, Garminia H. Generating roots of cubic polynomials by Cardano’s approach on correspondence analysis. Heliyon 2020, 6: e03998. doi.org/10.1016/j.heliyon.2020.e03998
  • 51. Horabik J, Molenda M. Parameters and contact models for DEM simulations of agricultural granular materials. Biosystems Engineering 2016, 147: 206–225. https:// doi.org/10.1016/j.biosystemseng.2016.02.017
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f98c5a2e-2516-4a35-b60b-4c928f971239
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.