Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | no. 4 | 87--97
Tytuł artykułu

Thermorefinery: prospects for the second generation of thermo-chemical biomass conversion systems

Treść / Zawartość
Warianty tytułu
PL
Rafineria termiczna: perspektywy dla drugiej generacji termochemicznych systemów do przekształcania biomasy
Języki publikacji
EN
Abstrakty
EN
The ThermoRefinery is a new concept and an associated practice representing the 2nd generation of thermochemical processes for the conversion of renewable feedstocks (biomass and wastes) to fuels, chemicals and other biobased products, while solving the most significant problems limiting the potential of this type of technologies to contribute to global and regional targets. This paper aims at demonstrating the ThermoRefinery approach and its applications, aiming at several objectives: optimising pretreatment processes for each feedstock, including leaching and torrefaction; designing optimal production systems; and, putting together optimal product vectors. The major optimization challenges are taking into account ash chemistry, which affects the ash melting point. These include minimising other ash-related problems, controlling tar content in the producer gas, minimizing emissions, and reducing feedstock handling problems.
PL
Rafineria termiczna to nowa koncepcja i związana z nią praktyka reprezentująca drugą generację procesów termochemicznych w zakresie przekształcania surowców odnawialnych (biomasy i odpadów) na paliwa, chemikalia i inne produkty biologiczne, przy rozwiązywaniu najważniejszych problemów ograniczających potencjał tego typu technologii w zakresie przyczynienia się do realizacji celów globalnych i regionalnych. Niniejszy artykuł ma na celu ukazanie podejścia do rafinerii termicznej i jej zastosowań, mając na uwadze kilka celów: optymalizację procesów obróbki wstępnej dla każdego surowca, w tym wymywanie i toryfikację; projektowanie optymalnych systemów produkcyjnych; łączenie optymalnych wektorów produktów. Głównym wyzwaniem optymalizacyjnym jest uwzględnienie składu chemicznego popiołu, który ma wpływ na temperaturę topnienia popiołu. Obejmuje on minimalizację innych problemów związanych z popiołem, kontrolę zawartości substancji smolistych w gazie produkcyjnym, minimalizację emisji i zmniejszenie problemów z obsługą surowca.
Wydawca

Rocznik
Tom
Strony
87--97
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • School of Chemical Engineering, National Technical University of Athens, Greece
  • School of Chemical Engineering, National Technical University of Athens, Greece
autor
Bibliografia
  • 1. Hornung A., Dasappa S.: Thermochemical Conversion of Biomass. In: Transformation of Biomass: Theory to Practice. John Wiley & Sons Ltd., 2014.
  • 2. Siddiqui S. (ed.): Fuels and Chemicals from Biomass via Thermochemical Routes. In: Opportunities and Obstacles in Large-Scale Biomass Utilization: The Role of the Chemical Sciences and Engineering Communities: A Workshop Summary. Washington (DC): National Academies Press, 2012.
  • 3. Dayton D.: Conversion Technologies for Advanced Biofuels - Bio-Oil Production. Report-Out Webinar. US Department of Energy, Energy Efficiency and Renewable Energy Programme, 2012.
  • 4. Dayton D.: A review of the literature on catalytic biomass tar destruction. Milestone Completion Report. National Renewable Energy Laboratory, 2002.
  • 5. Abatzoglou N., Bangala D., Chornet E.: An integrated modular hot gas conditioning technology. In: 4th Biomass Conference of the Americas, Oakland California, 1999. Biomass: A Growth Opportunity in Green Energy and Value-Added Products, Vol. 2, Elsevier Science, 1999, pp. 953-959.
  • 6. Aldén H., Hagstrom P., Hallgren A., Waldheim L.: High temperature catalytic gas cleaning for pressurized gasification processes. In: 9th European Bioenergy Conference, Copenhagen, June 24-27, 1996. Biomass for Energy and the Environment, Vol. 2, Elsevier Science, 1996, pp. 1410-1415.
  • 7. Miles T.R.P.E., Miles T.R. Jr., Baxter L.L., Bryers R.W., Jenkins B.M., Oden L.L.: Alkali deposits found in biomass power plants. Summary Report for the National Renewable Energy Laboratory, Volumes I-II. NREL Subcontract TZ-2-11226-1, 1995.
  • 8. Sander B.: Properties of danish biofuels and the requirements for power production. Biomass and Bioenergy, 1997, 12(3), pp. 177-183.
  • 9. Arvelakis S.: PhD dissertation. National Technical University of Athens, 2001.
  • 10. Arvelakis S., Koukios E.G.: Critical factors for high temperature processing of biomass from agriculture and energy crops to biofuels and bioenergy. Wiley Interdisciplinary Reviews - Energy and Environment, 2013, 2(4), pp. 441-455.
  • 11. Arvelakis S., Gehrmann H., Beckmann M., Koukios E.G.: Agglomeration problems during fluidized bed gasification of olive-oil residue: Evaluation of fractionation and leaching as pre-treatments. Fuel, 2003, 82(10), pp. 1261-1270.
  • 12. Monteleone M., Cammerino A.R.B., Karaoglanoglou L., Koullas D., Koukios E.G.: Agro-energy chains and energy potential from dedicated crops, agricultural and agro-industrial residues: The comparative study of two South European Regions in a 2020 perspective. In: 20th European Biomass Conference and Exhibition, Milan, 2012. Proceedings 20th European Biomass Conference, 2012, pp. 63-71.
  • 13. Arvelakis S., Gehrmann H., Beckmann M., Koukios E.G.: Preliminary results on the ash behavior of peach stones during fluidized bed gasification: evaluation of fractionation and leaching as pretreatments. Biomass and Bioenergy, 2005, 28, pp. 331-338.
  • 14. Arvelakis S., Vourliotis P., Kakaras E., Koukios E.G.: Effect of leaching on the ash behavior of wheat straw and olive residue during fluidized bed combustion. Biomass and Bioenergy, 2001, 20, pp. 459-470.
  • 15. Arvelakis S., Koukios E.G.: Physicochemical upgrading of agroresidues as feedstocks for energy production via thermochemical conversion methods. Biomass and Bioenergy, 2002, 22, pp. 331-348.
  • 16. Arvelakis S., Spliethoff H., Koukios E.G.: Torrefaction and leaching: A novel pre-treatment for the effective thermal conversion of agricultural residues. In: Proceedings of the 15th European Biomass Conference, Berlin (Germany), 7-11 May 2007.
  • 17. Koukios E.G., Maurokoukoulakis J., Abatzoglou N.: Energy densification of biomass. In: Proceedings of the 1st National Conference on Soft Energy Forms, Thessaloniki, Greece, 1982.
  • 18. Baxter L.L., Jenkins B.M., Miles T.R., Miles T.R.Jr., Milne T., Dayton D., Bryers R.W., Oden L.L.: Inorganic material deposition in biomass boilers. In: Proceedings of the 9th European Bioenergy Conference, Copenhagen, 1996, 2, p. 1114.
  • 19. Folkedahl B.C., Steadman E.N., Brekke D.W., Zygarlicke C.J.: Inorganic phase characterization of coal combustion products using advanced SEM techniques. In: Proceedings of the Engineering Foundation Conference, Solihull, (England), 1993, p. 399.
  • 20. Andersen K.H., Hansen P.F.B., Hansen K.W., Frandsen F., Dam-Johansen K.: Co-firing coal and straw in a 150MWe utility boiler. In: Proceedings of the 9th European Bioenergy Conference, Copenhagen, 1996, 2, p. 1102.
  • 21. Mann M.D., Galbreath K.C.: The role of ash chemistry and operating parameters on ash agglomeration and deposition in FBC systems. In: 5th Engineering Foundation Conference on ‘Inorganic Transformations and Ash Deposition During Combustion’, Palm Coast, 1991, p. 773.
  • 22. Spiegel M.: The role of molten salts in the corrosion of metals in waste incineration plants. Molten Salt Forum, 2003, 7, pp. 253-268.
  • 23. Spiegel M.: Corrosion Mechanisms and Failure Cases in Waste Incineration Plants. Materials Science Forum, 2001, 369-372, pp. 971-978.
  • 24. Otero E., Pardo A., Perez F.J., Utrilla M.V., Levi T.: Corrosion Behavior of 12CrMoV Steel in Waste Incineration Environments: Hot Corrosion by Molten Chlorides. Oxidation of Metals, 1998, 49(5-6), pp. 467-484.
  • 25. Krause H.H.: Corrosion by chlorine in wastefueled boilers. In: Proceedings of the International Conference on Fireside Problems While Incinerating Municipal and Industrial Waste, Florida, 1989.
  • 26. Khandra S., Mallick D., Dutta S.N., Chaudhuri S.K.: Studies on the Phase Mineralogy and Leaching Characteristics of Coal Fly Ash. Water, Air and Soil Pollution, 1998, 107(1-–4), pp. 251-275.
  • 27. Steenari B.M., Schelander S., Lindqvist O.: Chemical and leaching characteristics of ash from combustion of coal, peat and wood in a 12 MW CFB - a comparative study. Fuel, 1999, 78(2), pp. 249-258.
  • 28. Abbas Z., Steenari B.M., Lindqvist O.: A study of Cr(VI) in ashes from fluidized bed combustion of municipal solid waste: leaching, secondary reactions and the applicability of some speciation methods. Waste Management, 2001, 21(8), pp. 725-739.
  • 29. Baxter L., Miles T., Miles T. Jr., Jenkins B., Dayton D., Milne T., Bryers R., Oden L.: Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers-Field and laboratory experiences. Report for U.S. Department of Energy, Contract No. AC36-83CH10093, 1996.
  • 30. Program on Technology Innovation: Biomass Leaching Pretreatment Technology Bench Testing. EPRI Report ID#1022720, June 2011.
  • 31. Bakker R.R.: Biomass Fuel Leaching for the Control of Fouling, Slagging, and Agglomeration in Biomass Power Generation [PhD Thesis]. University of California, 2000.
  • 32. Jenkins B.M., Bakker R.R., Wei J.B.: On the properties of washed straw. Biomass and Bioenergy, 1996, 10, pp. 177-200.
  • 33. Jenkins B.M., Bakker R.R., Baxter L.L, Gilmer J.H., Wei J.B.: Combustion characteristics of leached biomass. In: Bridgwater A.V., Boocock D.G.B. (eds.): Developments in Thermochemical Biomass Conversion. Dordrecht: Springer, 1997.
  • 34. Turn S.Q., Kinoshita C.M., Ishimura D.M.: Removal of inorganic constituents of biomass feedstocks by mechanical dewatering and leaching. Biomass and Bioenergy, 1997, 12, pp. 241-252.
  • 35. Jenkins B.M., Baxter L.L., Miles Jr. T.T., Miles T.R.: Combustion properties of biomass. Fuel Processing Technology, 1998, 54, pp. 17-46.
  • 36. Demirbas M.F.: Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from biomass combustion and solid waste incineration. Energy Sources Part A – Recovery Utilization and Environmental Effects, 2007, 29, pp. 1041-1047.
  • 37. Lavric E.D., Konnov A.A., De Ruyck J.: Dioxin levels in wood combustion – a review. Biomass and Bioenergy, 2004, 26, pp. 115-145.
  • 38. Lavric E.D., Konnov A.A., De Ruyck J.: Modeling the formation of precursors of dioxins during combustion of woody fuel volatiles. Fuel,2005, 84, pp. 323-334.
  • 39. Jenkins B.M., Mannapperuma J.D., Bakker R.R.: Biomass leachate treatment by reverse osmosis. Fuel Processing Technology, 2003, 81, pp. 223-246.
  • 40. Bakker R.R., Jenkins B.M.: Feasibility of collecting naturally leached rice straw for thermal conversion. Biomass and Bioenergy, 2003, 25, pp. 597-614.
  • 41. Turn S.Q., Kinoshita C.M., Ishimura D.M., Zhou J.: The fate of inorganic constituents of biomass in fluidized bed gasification. Fuel, 1998, 77, pp. 135-146.
  • 42. Davidsson K.O., Korsgren J.G., Pettersson J.B.C., Jaglid U.: The effects of fuel washing techniques on alkali release from biomass. Fuel, 2002, 81, pp. 137-142.
  • 43. Dayton D.C., Jenkins B.M., Turn S.Q., Bakker R.R., Williams R.B., Belle-Oudry D., Hill L.M.: Release of inorganic constituents from leached biomass during thermal conversion. Energy and Fuels, 1999, 13, pp. 860-870.
  • 44. Milne T.R., Evans R.J., Abatzoglou N.: Biomass gasifier “tars”: Their nature, formation, and conversion. National Renewable Energy Laboratory, 1998.
  • 45. Kratky L., Jirout T.: Biomass size reduction machines for enhancing biogas production. Chemical Engineering & Technology, 2011, 34(3), pp. 391-399.
  • 46. Pach M., Zanzi R., Bjornbom E.: Torrefied biomass a substitute for wood and charcoal. In: 6th AsiaPacific International Symposium on Combustion and Energy Utilization, Kuala Lumpur, 2002.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f989539b-cf2c-42ec-8c32-bb96583e6826
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.