Warianty tytułu
Języki publikacji
Abstrakty
Instantaneous phase is a commonly used attribute for structural and stratigraphic feature characterization. The conventional calculation method is to construct the complex-valued seismic trace, then get the ratio of the imaginary part to the real part and fnally compute the antitangent of the ratio as the instantaneous phase attribute. In this way, the phase result at one time sample point is the total phase rotation from the beginning of the trace to this point, which means the traditional instantaneous phase is cumulative. Furthermore, the phase obtained by arctangent is usually entangled, which makes it more difcult to apply to seismic interpretation. To address the two issues above, we proposed a new way to calculate the improved local phase variation attributes. Firstly, we calculate traditional instantaneous phase and unwrap it. Then we set a time window on the unwrapped phase to compute the local phase variation by using some diference methods. Finally, we slide the time window on the whole trace to obtain the fnal phase variation attributes. This strategy turns the whole cumulative value into local variational value, which makes the obtained local phase variation nearly zero in the continuous region but changed greatly at the interface or the abnormal structure areas. Tested by the numerical model and the real data, the proposed attributes have a good application efect in channel detection, which provides a train of thought to seismic structure interpretation with phase attributes.
Czasopismo
Rocznik
Tom
Strony
357--364
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Exploration and Production Research Institute, Sinopec, Beijing 100083, China
autor
- Exploration and Production Research Institute, Sinopec, Beijing 100083, China
autor
- Exploration and Production Research Institute, Sinopec, Beijing 100083, China
autor
- State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Changping, Beijing 102249, China, wangty_cup@163.com
autor
- State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Changping, Beijing 102249, China
Bibliografia
- 1. Alkhalifah T (2014) Full-waveform inversion of the unwrapped phase of a model. Geophys Prospect 62:397–403
- 2. Bekara M, Vender BM (2007) Local singular value decomposition for signal enhancement of seismic data. Geophysics 72(2):V59–V65
- 3. Bozdag E, Trampert J, Trom J (2011) Misfit function for full waveform inversion based on instantaneous phase and envelope measurements. Geophys J Int 185:845–870
- 4. Browaeys TJ (2009) Complex-valued correlation and seismic attributes. SEG Tech Progr Expand Abstr
- 5. Brown AR (2011) Interpretation of three-dimensional seismic data. 7th edn, AAPG Memoir 42, SEG, 646
- 6. Corciulo M, Roux P, Campillo M et al (2010) Instantaneous phase estimation to measure weak velocity variations: application to noise correlation on seismic data at the exploration scale. American Geophysical Union, Washington
- 7. Das B, Chatterjee R, Singha DK et al (2017) Post-stack seismic inversion and attribute analysis in shallow offshore of Krishna-Godavari basin, India. J Geol Soc India 90(1):32–40
- 8. Duan Y, Peng Z, Zeng L, Bi M (2011) Carbonate reservoir and gas-bearing property detection using sweetness. SEG Tech Progr Expand Abstr 30(1):1197–1201
- 9. Guo H, Marfurt KJ, Liu JL (2009) Principal component spectral analysis. Geophysics 74(4):P35–P43
- 10. He M, Yang W, Chen X, Pu X (2010) Analysis and application of complex seismic trace based on FFT. J Chengdu Aeronaut Voc Tech Coll 26(1):61–65
- 11. Kaplan ST, Ulrych TJ (2007) Phase unwrapping: a review of methods and a novel technique. CSPG-CSEG Joint Conv 163:455–473
- 12. Lian SJ, Yuan SY, Wang GC, Liu T, Liu Y, Wang SX (2018) Enhancing low-wavenumber components of full-waveform inversion using an improved wavefield decomposition method in the time-space domain. J Appl Geophys 157:10–22
- 13. Lu WK, Zhang CK (2013) Robust estimation of instantaneous phase using a time-frequency adaptive filter. Geophysics 78(1):O1–O7
- 14. Marfurt KJ, Kirlin RL (2001) Narrow-band spectral analysis and thin-bed tuning. Geophysics 66:1274–1283
- 15. Oppenheim AV, Lim JS (1981) The importance of phase in signals. Proc IEEE Spec Issue Dig Image Process 69:529–541
- 16. Robertson JD, Nogami HH (1984) Complex seismic trace analysis of thin beds. Geophysics 49(4):344–352
- 17. Schimmel M, Stutzmann E, Gallart J (2011) Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale. Geophys J Int 184(1):494–506
- 18. Spagnolini U (1993) 2-D phase unwrapping and phase aliasing. Geophysics 58(9):1324–1334
- 19. Taner MT, Koehler F, Sheriff RR (1979) Complex seismic trace analysis. Geophysics 44:1041–1063
- 20. Ulrych TJ, Kaplan S, Sacchi MD, Galloway E (2007) The essence of phase in seismic data processing and inversion. SEG Tech Progr Expand Abstr 1765–1769
- 21. Yuan SY, Ji YZ, Shi PD, Zeng J, Gao JH, Wang SX (2019) Sparse Bayesian learning-based seismic high-resolution time-frequency analysis. IEEE Geosci Remote Sens Lett 16(4):623–627
- 22. Yuan SY, Wang SX, Luo CM, Wang TY (2018) Inversion-based 3-D seismic denoising for exploring spatial edges and spatio-temporal signal redundancy. IEEE Geosci Remote Sens Lett 15(11):1682–1686
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f95a3d09-8e75-41cf-8337-286cbacc0c38