Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 16, no. 4 | 825--834
Tytuł artykułu

Sequence of damage events occurring in the course of low energy impact

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Finite element simulation was carried out to better understand damage formation in CF/epoxy plate in the course of a low velocity 8J impact. The plate under investigation was of [+30/−30]s lay-up. To validate the numerical results a drop test was carried out with the help of a drop tower. The interlaminar damage extent was determined with the help of C-scan. Comparison between the numerical and experimental results showed a good quantitative agreement concerning contact force time history, however, the amount of dissipated energy determined based on the numerical simulation was lower than that from the experiment,consistently, the damage extent determined based on numerical simulation was smaller than that determined by C-scan. Nevertheless, characteristic points on the plot representing contact force time history could be related to the particular damage mechanism onsets and their actions.
Słowa kluczowe
Wydawca

Rocznik
Strony
825--834
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00 665 Warsaw, Poland, pecz@meil.pw.edu.pl
autor
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00 665 Warsaw, Poland
Bibliografia
  • [1] E. Abisset, F. Daghia, X.C. Sun, M.R. Wisnom, S.R. Hallett, Interaction of inter- and intralaminar damage in scaled quasi-static indentation tests: part 1 – experiments, Composite Structures 136 (2016) 712–726.
  • [2] A. Wagih, P. Maimí, N. Blanco, J. Costa, A quasi-static indentation test to elucidate the sequence of damage events in low velocity impacts on composite laminates, Composites A 82 (2016) 180–189.
  • [3] A.T. Nettles, M.J. Douglas, in: A.T. Nettles, A. Zureick (Eds.), A Comparison of Quasi-Static Indentation Testing to Low Velocity Impact Testing, Composite Materials: Testing, Design, and Acceptance Criteria, ASTM STP 1416, American Society for Testing and Materials, West Conshohocken, PA, 2002.
  • [4] J.A. Artero-Guerrero, J. Pernas-Sánchez, J. López-Puente, D. Varas, Experimental study of the impactor mass effect on the low velocity impact of carbon/epoxy woven laminates, Composite Structures 133 (2015) 774–781.
  • [5] H. Zabala, L. Aretxabaleta, G. Castillo, J. Urien, J. Aurrekoetxea, Impact velocity effect on the delamination of woven carbon–epoxy plates subjected to low-velocity equienergetic impact loads, Composites Science and Technology 94 (2014) 48–53.
  • [6] S.W. Tsai, Weight and cost reduction by using unbalanced and unsymmetric laminates, in: 18th International Conference on Composite Materials, 21 August 2011–26 August, Jeju International Convention Center, Jeju Island, South Korea, 2011.
  • [7] P. Sanial, How C – PlyTM can change the way we design and manufacture, in: JEC Composites Innovative Composite Summit, Singapore, June, 2013.
  • [8] W. Cantwell, Geometrical effects in the low velocity impact response of GFRP, Composites Science and Technology 67 (9) (2007) 1900–1908.
  • [9] D.A.O. Davies, P. Robinson, Predicting failure by debonding/ delamination, in: AGARD 74th Structures and Materials Meeting, 1992.
  • [10] G. Dorey, Impact damage in composites-development, consequences, and prevention, in: Proc of 6th Int. Conference on Composite Materials and 2nd European Conference on Composite Materials, vol. 3, Imperial College London, London, (1987) 3.1–3.26.
  • [11] G. Davies, X. Zhang, Impact damage prediction in carbon composite structures, International Journal of Impact Engineering 16 (1) (1995) 149–170.
  • [12] F. Mili, B. Necib, Impact behavior of cross-ply laminated composite plates under low velocities, Composite Structures 51 (3) (2001) 237–244.
  • [13] S. Khalili, M. Soroush, A. Davar, O. Rahmani, Finite element modeling of low-velocity impact on laminated composite plates and cylindrical shells, Composite Structures 93 (5) (2011) 1363–1375.
  • [14] C.N. Oguibe, D.C. Webb, Finite-element modelling of the impact response of a laminated composite plate, Composites Science and Technology 59 (12) (1999) 1913– 1922.
  • [15] I. Choi, Low-velocity impact analysis of composite laminates under initial in-plane load, Composite Structures 86 (1–3) (2008) 251–257.
  • [16] Z. Aslan, R. Karakuzu, B. Okutan, The response of laminated composite plates under low-velocity impact loading, Composite Structures 59 (1) (2003) 119–127.
  • [17] R. Krueger, The virtual crack closure technique: history, approach and applications, in: NASA/CR-2002-211628 ICASE Report No. 2002-10, 2002, 1–59.
  • [18] S.J. Lord, M.F. Ngah, On the modelling of impact damage growth in composite structures, in: European Conference for Aerospace Science, 2005.
  • [19] S. Long, X. Yao, X. Zhang, Delamination prediction in composite laminates under low-velocity impact, Composite Structures 132 (2015) 290–298.
  • [20] A. Needleman, A continoum model for void nucleation by inclusion debonding, Journal of Applied Mechanics 54 (1987) 525–531.
  • [21] V. Tvergaard, J.W. Hutchinson, The influence of plasticity on mixed mode interface toughness, Journal of Mechanics and Physics of Solids 41 (1993) 1119–1135.
  • [22] W. Cui, M.R.A. Wisnom, A combined stress-based and fracture mechanics-based model for predicting delamination in composites, Composites 24 (1993) 467–474.
  • [23] Y. Mi, M.A. Crisfield, G.A.O. Davis, Progressive delamination using interface elements, Journal of Composite Materials 32 (1998) 1246–1272.
  • [24] N. Hongkarnjanakul, C. Bouvet, S. Rivallant, Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure, Composite Structures 106 (2013) 549–559.
  • [25] H.D. Espinosa, S. Dwivedi, H. Lu, Modeling impact induced delamination of woven fiber reinforced composites with contact/cohesive laws, Computer Methods in Applied Mechanics and Engineering 183 (3–4) (2000) 259–290.
  • [26] D.J. Elder, R.S. Thomson, M.Q. Nguyen, M.L. Scott, Review of delamination predictive methods for low speed impact of composite laminates, Composite Structures 66 (1–4) (2004) 677–683.
  • [27] Y. Zhang, P. Zhu, X. Lai, Finite element analysis of low-velocity impact damage in composite laminated plates, Materials & Design 27 (6) (2006) 513–519.
  • [28] F. Aymerich, F. Dore, P. Priolo, Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements, Composites Science and Technology 68 (12) (2008) 2383–2390.
  • [29] C. Bouvet, S. Rivallant, J.J. Barrau, Low velocity impact modeling in composite laminates capturing permanent indentation, Composites Science and Technology 72 (2012) 1977–1988.
  • [30] L. Iannucci, Progressive failure modelling of woven carbon composite under impact, International Journal of Impact Engineering 32 (6) (2006) 1013–1043.
  • [31] P. Maimí, P.P. Camanho, J.A. Mayugo, C.G. Dávila, A continuum damage model for composite laminates: part I – constitutive model, Mechanics of Materials 39 (10) (2007) 897–908.
  • [32] M.V. Donadon, L. Iannucci, B.G. Falzon, J.M. Hodgkinson, S. de Almeida, A progressive failure model for composite laminates subjected to low velocity impact damage, Computers & Structures 86 (11–12) (2008) 1232–1252.
  • [33] C.S. Lopes, P.P. Camanho, Z. Gürdal, P. Maimí, E.V. González, Low-velocity impact damage on dispersed stacking sequence laminates. Part II: numerical simulations, Composites Science and Technology 69 (7–8) (2009) 937–947.
  • [34] S. Wang, L. Wu, L. Ma, Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates, Materials & Design 31 (1) (2010) 118–125.
  • [35] S.W. Tsai, E.M.G. Wu, A general theory of strength for anisotropic materials, Journal of Composite Materials 5 (1971) 58–80.
  • [36] Z. Hashin, Failure criteria for unidirectional fiber composites, Journal of Applied Mechanics 47 (1980) 329–334.
  • [37] F.K. Chang, K.Y. Chang, Post-failure analysis of bolted composite joints in tension or shear-out mode failure, Journal of Composite Materials 21 (1987) 809–833.
  • [38] A. Puck, H. Schurmann, Failure analysis of FRP laminates by means of physically based phenomenological models, Composites Science and Technology 62 (2002) 1633–1662.
  • [39] L. Maio, E. Monaco, F. Ricci, L. Lecce, Simulation of low velocity impact on composite laminates with progressive failure analysis, Composite Structures 103 (2013) 75–85.
  • [40] Y. Shi, T. Swait, C. Soutis, Modelling damage evolution in composite laminates subjected to low velocity impact, Composite Structures 94 (9) (2012) 2902–2913.
  • [41] Ansys, Release 14.5, Ansys, Inc., 2012, pp. 159–162.
  • [42] A. Ahmed, L. Wei, The low-velocity impact damage resistance of the composite structures – a review, Reviews on Advanced Materials Science 40 (2015) 127–145.
  • [43] M. Grasso, F. Penta, G.P. Pucillo, F. Ricci, V. Rosiello, Low velocity impact response of composite panels for aeronautical applications, in: Proceedings of the World Congress on Engineering, vol. II, London, UK, 2015.
  • [44] A. Riccio, A. de Luca, G. di Felice, F. Caputo, Modelling the simulation of impact induced damage onset and evolution in composites, Composites B 66 (2014) 340–347.
  • [45] G.A. Schoeppnera, S. Abrateb, Delamination threshold loads for low velocity impact on composite laminates, Composites A 31 (2000) 903–915.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f95a3225-3cbc-4165-a58c-58cb6650d7dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.