Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 82, nr 1 | 33--40
Tytuł artykułu

Development of key performance selection index model

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main idea of this paper is to introduce the refined model for selection of the Key performance indicators (KPI). The KPI selection model can be considered as a tool for analysis of the enterprise, which should be able to simplify the choice of the right metrics for the company, where study has been conducted. The Enterprise analysis model (EAM) will provide the information regarding weak spots on the production and provide further steps to the management. Those actions will save time and reduce resources that are necessary to implement metrics in company. Design/methodology/approach: Main activities performed include: optimization of EAM; Fuzzy AHP and SMARTER criteria’s for ranking the KPIs; reliability analysis and weights appointment to questions and KPIs. In addition, the expert group has participated in the analysis of this work and has made a high impact on the results. Findings: The main result of this work is the final version of the KPI selection model. Research limitations/implications: The future research should be focused on optimization of the model and in adding additional module for automatic data collection. The Production Monitoring System (PMS) that should help to collect data about the status of the machine park, taking into account the downtime, overall equipment efficiency (OEE) and etc. Practical implications: The proposed model can be used in SME (small and medium enterprises) in order to improve the productivity. The concept was tested in particular company. Originality/value: The KPI selection model combine different methodologies into one general approach. Due to this fact, the process of finding right metrics can be reduced significantly. The proposed approach allows saving resources for the research of metrics.
Wydawca

Rocznik
Strony
33--40
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia , sergei.kaganski@outlook.com
autor
  • Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
Bibliografia
  • [1] M.P. Brundage, W.Z. Bernstein, K.C. Morris, J.A. Horst, Using Graph-based Visualizations to Explore Key Performance Indicator Relationships for Manufacturing Production Systems, Procedia CIRP 61 (2017) 451-456.
  • [2] N. Stricker, M. Micali, D. Dornfeld, G. Lanza, Considering Interdependencies of KPIs – Possible Resource Efficiency and Effectiveness Improvements, Procedia Manufacturing 8 (2017) 300-307.
  • [3] A. Arora, S. Kaur, Performance assessment model for management educators based on KRA/KPI, Proceedings of the International Conference on Technology and Business Management, 2015.
  • [4] D. Parmenter, Key performance indicators: developing, implementing and using winning KPIs, John Wiley & Sons, Inc. 2007.
  • [5] A. Mate, J. Trujilo, J. Mylopoulos, Specification and derivation of key performance indicators for business analytics: A semantic approach, Data & Knowledge Engineering 108 (2017) 30-49.
  • [6] M. Chioua, M. Bauer, S. Chen, J. C. Schlake, G. Sand, W. Schmidt, N. Thornhill, Plant-wide root cause identification using plant key performance indicators (KPIs) with application to a paper machine, Control Engineering Practice 49 (2016) 149-158.
  • [7] M. Bauer, M. Lucke, C. Johnsson, I. Harjunkoski, J.C. Schlake, KPIs as the interface between scheduling and control, IFAC-PapersOnLine 49 (2016) 687-692.
  • [8] E. Amrina, A.L. Vilsi, Key Performance Indicators for Sustainable Manufacturing Evaluation in Cement Industry, Procedia CIRP 26 (2015) 19-23.
  • [9] K. Zhang, Y.A. W. Shardt, Z. Chen, X. Yang, S.X. Ding, K. Peng, A KPI-based process monitoring and fault detection framework for large-scale processes, ISA Transactions 68 (2017) 276-286.
  • [10] C.F. Lindberg, S.T. Tah, J.Y. Yan, F. Starfelt, Key Performance Indicators Improve Industrial Performance, Energy Procedia 75 (2015) 1785-1790.
  • [11] W.W. Eckerson, Performance management strategies: How to create and deploy effective metrics, TDWI, 2009.
  • [12] G.T. Doran, There’s a S.M.A.R.T. way to write management’s goals and objectives, Management Review 70/11 (1981) 35-36.
  • [13] A. Shahin, M.A. Mahbod, Prioritization of key performance indicators. An integration of analytical hierarchy process and goal setting, International Journal of Productivity and Performance Management 56 (2015) 226-240.
  • [14] S. Kadarsah, Framework of measuring key performance indicators for decision support of higher education institution, Journal of Applied Sciences Research 3/12 (2007) 1689-1695.
  • [15] J. Yuan, C. Wang, M.J. Skibniewski, Q. Li, Developing key performance indicators for PublicPrivate partnership projects: Questionnaire survey and analysis, Journal of Management in Engineering 28/3 (2012) 252-264.
  • [16] D. Podgorski, Measuring operational performance of OSH management systems – a demonstration of AHPbased selection of leading key performance indicators, Safety Science 73 (2015) 146-166.
  • [17] A. May, A. Anslow, Y. Wu, O. Udechukwu, M. Chipulu, A. Marshall, Prioritisation of performance indicators in air cargo demand management: an insight from industry, Supply Chain Management: an International Journal 19 (2014) 108-113.
  • [18] S. Kaganski, M. Paavel, J. Lavin, Selecting Key Performance indicators with support of enterprise analyse model, Proceedings of the 9th International Conference of DAAAM Baltic Industrial Engineering, Tallinn, Estonia, 2014, 97-102.
  • [19] S. Kaganski, M. Paavel, K. Karjust, J. Majak, A. Snatkin, Difficulties in SMEs and KPI selection model as a solver, Proceedings of the 10th International DAAAM Baltic Conference, Industrial Engineering, Tallinn, Estonia, 2015, 33-38.
  • [20] S. Kaganski, J. Majak, K. Karjust, S. Toompalu, Implementation of key performance indicators selection model as part of the Enterprise Analysis Model, Procedia CIRP: The 50th CIRP Conference on Manufacturing Systems (CMS), Taichung City, Taiwan, 2017, (pending).
  • [21] S. Kaganski, J. Majak, K. Karjust, Optimization of Enterprise Analysis Model (EAM) for KPI selection model, 2017 (in press).
  • [22] M. Durkacova, J. Lavin, K. Karjust, KPI Optimization for Product Development Process, Proceedings of the 23rd International DAAAM Symposium, Austria, 2012.
  • [23] R. Baroudi, KPI mega library: 17000 key performance indicators, CreateSpace Independent Publishing Platform, Scotts Valley, California, USA, 2010.
  • [24] M. Paavel, A. Snatkin, K. Karjust, PLM optimization with cooperation of PMS in production stage, Archives of Materials Science and Engineering 60/1 (2013) 38-45.
  • [25] A. Snatkin, T. Eiskop, K. Karjust, J. Majak, Production monitoring system development and modification, Proceedings of the Estonian Academy of Sciences 64 (2015) 567-580.
  • [26] T. Aruväli, R. Serg, J. Preden, T. Otto, In-process determining of the working mode in CNC turning, Estonian Journal of Engineering 17/1 (2014) 4-16.
  • [27] T. Aruväli, J. Preden, T. Otto, Modern monitoring opportunities in shop floor, Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, 2010.
  • [28] S. Kaganski, K. Karjust, J. Majak, Fuzzy AHP as a tool for prioritization of key performance indicators, Proceeding of the Estonian Academy of Science, 2017 (in press).
  • [29] K. Karjust, M. Pohlak, J. Majak, Technology Route Planning of Large Composite Parts, International Journal of Material Forming 3 (2010) 631-634.
  • [30] J. Lellep, J. Majak, Nonlinear constitutive behaviour of orthotropic materials, Mechanics of Composite Materials 36 (2000) 261-266.
  • [31] J. Lellep, J. Majak, On optimal orientation of nonlinear elastic orthotropic materials, Structural Optimization 14 (1997) 116-120.
  • [32] A. Aruniit, J. Kers, D. Goljandin, M. Saarna, K. Tall, J. Majak, H. Herranen, Particulate Filled Composite Plastic Materials from Recycled Glass Fibre Reinforced Plastics, Materials Science (Medžiagotyra) 17 (2011) 276-281.
  • [33] K. Karjust, M. Pohlak, J. Majak, Optimal adhesion measuring methods of the glass fiber reinforcement layer, Estonian Journal of Engineering 16 (2010) 297306.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f925da33-83e0-4f6a-af44-a3fcde66b273
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.