Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we introduce a new explicit iterative scheme for approximation of fixed points of demicontinuous pseudocontractive mappings in uniformly smooth Banach spaces and prove strong convergence of our proposed iterative scheme. Furthermore, we modify our explicit iterative scheme for approximation of zeroes of bounded demicontinuous accretive mappings in uniformly smooth Banach spaces. Our result improves, extends and unifies most of the results that have been proved for this class of mappings.
Czasopismo
Rocznik
Tom
Strony
213--229
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- Mathematics Institute, African University of Science and Technology, Abuja, Nigeria, cchidume@aust.edu.ng
autor
- Department of Mathematics, University of Nigeria, Nsukka, Nigeria, deltanougt2006@yahoo.com
Bibliografia
- [1] V. Berinde, Iterative Approximation of Fixed Points, Editura Efemeride, Baia Mare, 2002.
- [2] V. Berinde, Iterative Approximation of Fixed Points, Lecture Notes in Math. 1912, Springer, 2007.
- [3] F. E. Browder, Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Rational Mech. Anal. 24 (1967), 82-90.
- [4] F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882.
- [5] C. E. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, Lecture Notes in Math. 1965, Springer, 2009.
- [6] C. E. Chidume and S. Mutangadura, An example on the Mann iteration method for Lipschitz pseudo-contractions, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2359-2363.
- [7] C. E. Chidume and H. Zegeye, Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps, Proc. Amer. Math. Soc. 132 (2004) 831-840.
- [8] C. E. Chidume and H. Zegeye, Convergence theorems for fixed points of demicontinuous pseudocontractive mappings, Fixed Point Theory Appl. (2005), no. 1, 67-77.
- [9] S. Y. Cho, X. Qin and S. M. Kang, Hybrid projection algorithms for treating common fixed points of a family of demicontinuous pseudocontractions, Appl. Math. Lett. 25 (2012), 584-587.
- [10] P. Cholamjiak and S. Suantai, Weak convergence theorems for a countable family of strict pseudocontractions in Banach spaces, Fixed Point Theory Appl. (2010), article ID 632137.
- [11] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990.
- [12] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
- [13] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), no. 1,147-150.
- [14] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520.
- [15] E. Kopecka and S. Reich, Nonexpansive retracts in Banach spaces, Banach Center Publication 11 (2007), 161-174.
- [16] K. Q. Lan and J. H. Wu, Convergence of approximants for demicontinuous pseudo-contractive maps in Hilbert spaces, Nonlinear Anal. 49 (2002), no. 6, 737-746.
- [17] W. R. Mann, Mean value methods in iterations, Bull. Amer. Math. Soc. 4 (1953), 506-510.
- [18] C. H. Morales, Zeros of accretive operators satisfying certain boundary conditions, J. Math. Anal. Appl. 105 (1985), 167-175.
- [19] C. H. Morales and J. S. Jung, Convergence of paths for pseudocontractive mappings in Banach spaces, Proc. Amer. Math. Soc. 128 (2000), no. 11, 3411-3419.
- [20] E. U. Ofoedu and H. Zegeye, Further investigation on iteration processes for pseudocontractive mappings with application, Nonlinear Anal. 75 (2012), 153-162.
- [21] S. Reich, Extension problems for accretive sets in Banach spaces, J. Functional Anal. 26(1977), 378-395.
- [22] S. Reich, An iterative procedure for constructing zeros of accretive sets in Banach spaces, Nonlinear Anal. 2 (1978), no. 1, 85-92.
- [23] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), no. 1, 287-292.
- [24] W. Takahashi and Y. Ueda, On Reich’s strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984), no. 2, 546-553.
- [25] H. K. Xu, Inequality in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138.
- [26] H. K. Xu, Iterative algorithm for nonlinear operators, J. London Math. Soc. 66 (2002), no. 2, 1-17.
- [27] Z. B. Xu and G. F. Roach, Characteristic inequalities of uniformly smooth Banach spaces, J. Math. Anal. Appl. 157 (1991), 189-210.
- [28] Y. Yu, An iterative algorithm on approximating fixed points of pseudocontractive mappings, J. Appl. Math. (2012), article ID 341953.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f91ea009-d11c-480b-b393-f03e34632ccd