Warianty tytułu
Classification of brown coal fly ash fractions by wet, magnetic separation methods, and determination of physical, morphological, and chemical properties of separated fractions, Part 1
Języki publikacji
Abstrakty
W artykule przedstawiono sposób frakcjonowania popiołu lotnego z użyciem procesu flotacji oraz separacji magnetycznej jak również właściwości uzyskanych frakcji popiołu. Popiół ze spalania węgla brunatnego rozdzielono na 3 frakcje w basenie flotacyjnym a następnie każdą z frakcji poddano suszeniu oraz separacji magnetycznej za pomocą magnesu stałego umieszczonego ponad taśmociągiem. Górna warstwa cząstek uzyskanych po procesie flotacji składała się przede wszystkim z mikrosfer. W drugiej warstwie występowały kuliste lub owalne ziarna, niektóre zawierające drobne pory. Ziarna tej frakcji miały najmniejsze rozmiary. W dolnej warstwie dominowały nieregularne ziarna bogatsze w żelazo. Frakcje wydzielone za pomocą magnesu charakteryzowały się podwyższoną zawartością żelaza, nawet do ponad 40% Fe2O3 oraz większym rozmiarem ziaren w porównaniu do wyjściowego popiołu. Zawartość cząstek magnetycznych w poszczególnych frakcjach wynosiła: 2% dla górnej warstwy, około 4% dla warstwy środkowej oraz 15% dla warstwy dolnej.
Article presents method of fly ash separation with the use of flotation followed by magnetic separation. Properties of so obtained fly ash fractions were also presented. Fly ash obtained from brown coal combustion was separated into three fractions in floatation pool. Next, each fraction was air dried and subjected to magnetic separation using permanent magnet placed over conveyer belt. Upper layer of particles obtained during flotation consisted mainly of cenospheres. Second layer was composed of round and oval particles, some of them containing fine pores. Particle size distribution of grains in second layer was the finest. Bottom layer contained mainly coarse irregular grains rich in iron. Fractions separated by magnetic separation were characterized by increased iron content, even up to 40% of Fe203 as well as coarser grain size comparing to raw fly ash. Magnetic particles contents in upper, middle and bottom layers were 2%, 4% and 15% respectively.
Czasopismo
Rocznik
Tom
Strony
249--259
Opis fizyczny
Bibliogr. 25 poz., il., tab.
Twórcy
autor
- Faculty of Civil Engineering, Department of Mechanics, Czech Technical University, Prague, Czech Republic, usmanhaider6886@gmail.com
autor
- Faculty of Civil Engineering, Department of Mechanics, Czech Technical University, Prague, Czech Republic
autor
- Faculty of Civil Engineering, Department of Mechanics, Czech Technical University, Prague, Czech Republic
autor
- Department of Highways, Parson International, Qatar
Bibliografia
- 1. P. Duxson, J. L. Provis, Designing precursors for geopolymer cements, J. Am. Ceram. Soc., 91, 3864–3869 (2008).
- 2. M. Aboustait, T. Kim, M. Tyler Ley, J. M. Davis, Physical and chemical characteristics of fly ash using automated scanning electron microscopy, Constr. Build. Mat., 106, 1–10 (2016).
- 3. R. S. Blissett, & N. A. Rowson, A review of the multi-component utilization of coal fly ash, Fuel, 97, 1–23 (2012).
- 4. H. T. B. M. Petrus, Tsuyoshi Hirajima, Yuji Oosako, Moriyasu Nonaka, Keiko Sasaki, Takashi Ando, Performance of dry-separation processes in the recovery of cenospheres from fly ash and their implementation in a recovery unit, Intern. J. of Mineral Processing, 98, 15–23 (2011).
- 5. K. H. Pedersen, A. D. Jensen, M. S. Skjoth-Rasmussen, K. Dam-Johansen A review of the interference of carbon containing fly ash with air entrainment in concrete, Prog. Energy Combust. Sci., 34, 135–54 (2008).
- 6. L. Ngu, H. Wu and D. Zhang, Characterization of Ash Cenospheres in Fly Ash from Australian Power Stations, Energy Fuels, 21, 3437–3445 (2007).
- 7. P. K. Kolay, S. Bhusal, Recovery of hollow spherical particles with two different densities from coal fly ash and their characterization, Fuel 117, 118–124 (2014).
- 8. J. Li, A. Agarwal, S. M. Iveson, A. Kiani, J. Dickinson, J. Zhou, K. P. Galvin, Recovery and concentration of buoyant cenospheres using an Inverted Reflux Classifier, Fuel Process. Techn., 123, 127–139 (2014).
- 9. S.V. Vassilev, R. Menendez, A. G. Borrego, M. Diaz-Somoano, M. R. Martinez-Tarazona, Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 3. Characterization of magnetic and char concentrates, Fuel, 83, 1563–83 (2004).
- 10. O. M. Sharonova, N. N. Anshits, M. A. Fedorchak, A. M. Zhizhaev, A. G. Anshits, Characterization of Ferrospheres Recovered from High-Calcium Fly Ash, Energy Fuel, 29, 5404−5414 (2015).
- 11. A. Rawle, The importance of particle sizing to the coatings industry. Part 1: particle size measurement, Adv. Colour Sci. Technol., 5, 1–12 (2002).
- 12. B. Y. Shekunov, P. Chattopadhyay, H. H. Y. Tong, A. H. L. Chow, Particle size analysis in pharmaceutics: principles, methods and applications, Pharm. Res., 24, 203–227 (2007).
- 13. O. Scheibelhofer, M. O. Besenhard, M. Piller, J. G. Khinast, Comparing particle size distributions of an arbitrary shape, Powder Technology, 294, 134–145 (2016).
- 14. J. Blondeau, R. Kock, J. Mertens, A. J. Eley, L. Holub, Online monitoring of coal particle size and flow distribution in coal-fired power plants: Dynamic effects of a varying mill classifier speed, Applied Thermal Engineering, 98, 449–454 (2016).
- 15. S. H. Lee, E. Sakai, M. Daimon, W. K. Bang, Characterization of fly ash directly collected from electrostatic precipitator, Cem. Concr. Res., 29, 1791 – 1797 (1999).
- 16. S. H. Lee, H. J. Kim, E. Sakai, M. Daimon, Effect of particle size distribution of fly ash-cement system on the fluidity of cement pastes, Cem. Concr. Res., 33, 763 – 768 (2003).
- 17. M. Zyrkowski, R. Costa Neto, L. F. Santos, K. Witkowski, Characterization of fly-ash cenospheres from coal-fired power plant unit, Fuel, 174, 49–53 (2016).
- 18. X. L. Zhang, G. J. Wu, T. D. Yao, et al., Characterization of individual fly ash particles in surface snow at Urumqi Glacier, No. 1, Eastern Tianshan, Chinese Sci Bull., 56, 3464−3473 (2011).
- 19. M. Aboustait, T. Kim, M. Tyler Ley, J. M. Davis, Physical and chemical characteristics of fly ash using automated scanning electron microscopy, Constr. Build. Mat., 106, 1–10 (2016).
- 20. Y. Zhao, J. Zhang, J. Sun, X. Bai, C. Zheng, Mineralogy, Chemical Composition, and Microstructure of Ferrospheres in Fly Ashes from Coal Combustion, Energy & Fuels, 20, 1490-1497 (2006).
- 21. E. V. Sokol, V. M. Kalugin, E. N. Nigmatulina, N. I. Volkova, A. E. Frenkel, N. V. Maksimova, Ferrospheres from fly ashes of Chelyabinsk coals: chemical composition, morphology and formation conditions, Fuel 81, 867-876 (2002).
- 22. Sh. R. Malikov, V. P. Pikul, N. M. Mukhamedshina, V. N. Sandalov, S. Kudiratov, E. M. Ibragimova, Content and Distribution of Transition Metals and Rare Earth Elements in Magnetically and Mechanically Separated Brown Coal Ash, J. of Magnetics, 18, 365-369 (2013).
- 23. Q. F. Xue, S. G. Lu, Microstructure of ferrospheres in fly ashes: SEM, EDX and ESEM analysis, Journal of Zhejiang University, SCIENCE A, 9, 1595-1600 (2008).
- 24. M. Zyrkowski, R. Costa Neto, L. F. Santos, K. Witkowski, Characterization of fly-ash cenospheres from coal-fired power plant unit, Fuel, 174, 49–53(2016).
- 25. A. G. Anshits, O. M. Sheronova, N. N. Anshits, S. N. Vereshchagin, E. V. Rabchevskii, L. A. Solovjev, Ferrospheres from fly ashes: composition and catalystic properties in high-temperature oxidation of methane, World of Coal Ash (WOCA),Int. Conference, USA (2011).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f91dd69d-b1ea-42d5-9122-0faf63db2877