Warianty tytułu
Języki publikacji
Abstrakty
Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan. Mixtures based on silicone, silicone with a platinum catalyst, acrylonitrile-butadiene rubber, natural rubber, and ethylene-propylene-diene rubber were developed and tested for antibacterial and physico-mechanical properties. The dispersion of chitosan in the elastomer was also investigated using a scanning electron microscope. Of the tested mixtures, three were selected, characterised by the best antibacterial and physico-mechanical properties and a very good dispersion of chitosan in the matrix. The mixtures were based on silicone, silicone with a platinum catalyst and natural rubber. Tests were performed to measure the release of compounds into water for these mixtures. Furthermore, cytotoxicity with L929 cells and cytocompatibility in direct contact with MG63 cells were investigated for silicone samples. The results showed that these materials were not toxic to mammalian cells and supported their growth. The best bactericidal properties against E. coli and S. aureus strains compared to the other tested materials (>99.0–99.9% of killed bacteria) were shown by samples made of silicone and silicone with a platinum catalyst and added chitosan. At the same time, the best physico-mechanical properties were found for the samples with chitosan based on silicone with added platinum and natural rubber. Developed materials appeared to be good candidates for manufacturing medical equipment on which the adhesion and growth of bacteria should be prevented.
Czasopismo
Rocznik
Tom
Strony
13--23
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
- Łukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, Toruń, Poland, katarzyna.rucinska@impib.lukasiewicz.gov.pl
autor
- Łukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, Toruń, Poland
autor
- Łukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, Toruń, Poland
- AGH University of Krakow, Faculty of Materials Science and Ceramics, Kraków, Poland
autor
- AGH University of Krakow, Faculty of Materials Science and Ceramics, Kraków, Poland
Bibliografia
- [1] ABDEL AZIZ M., ATTIA M., BADR M., The effect of chitosan on the physico-mechanical and antimicrobial properties of gamma irradiated ethylene propylene diene monomer/fumed silica nanocomposites, Egyptian Journal of Chemistry, 2023, DOI: 10.21608/ejchem.2023.230116.8455.
- [2] AJDNIK U., FINŠGAR M., FRAS ZEMLJIČ L., Characterization of chitosan-lysine surfactant bioactive coating on silicone substrate, Carbohydr. Polym., 2020, 232, 115817, DOI: 10.1016/j.carbpol.2019.115817.
- [3] ANMIYA P., BINDIYA E.S., HONEY G., JOSE J., BHAT S.G., HONEY J., ABHITHA K., Carboxymethyl chitosan capped copper oxide nanomaterials as antibacterial and antibiofilm coating for vulcanized natural rubber film, Nano-Structures and Nano-Objects, 2022, 32, 100920, DOI: 10.1016/j.nanoso. 2022.100920.
- [4] BETTENCOURT A.F., TOM´E C., OLIVEIRA T., MARTIN V., SANTOS C., GONÇALVES L., FERNANDES M.H., GOMES P.S., RIBEIRO I.A.C., Exploring the potential of chitosan-based particles as delivery-carriers for promising antimicrobial glycolipid biosurfactants, Carbohydr. Polym., 2021, 254, 117433, DOI: 10.1016/j.carbpol.2020.117433.
- [5] BLASTER S.A., SCHERINGER M., MACLEOD M., HUNGERBUHLER K., Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles, Sci. Total. Environ., 2008, 390 (2–3), 396–409, DOI: 10.1016/j.scitotenv.2007.10.010.
- [6] DADI N.C.T., RADOCHOVÁ B., VARGOVÁ J., BUJDÁKOVÁ H., Impact of healthcare-associated infections connected to medical devices-an update, Microorganisms, 2021, 9 (11), 2332, DOI: 10.3390/microorganisms9112332.
- [7] DĄBROWSKI K., PAWŁOWSKA U., DĘBEK C., Elastomery o właściwościach biobójczych, Polimery, 2019, 64 (4), 393–466, DOI: dx.doi.org/10.14314/polimery.2019.6.1.
- [8] DEPAN D., KUMAR B., SINGH R.P., Preparation and characterization of novel hybrid of chitosan-g-PDMS and sodium montmorrilonite, J. Biomed. Mater. Res. Appl. Biomater., 2008, 84 (1), 184–190, DOI: 10.1002/jbm.b.30860. Antibacterial properties of elastomers modified with chitosan 23
- [9] GU G., ERIŞEN D.E., YANG K., ZHANG B., SHEN M., ZOU J., QI X., CHEN S., XU X., Antibacterial and anti-inflammatory activities of chitosan/copper complex coating on medical catheters: In vitro and in vivo, J. Biomed. Mater Res. B. Appl. Biomater., 2022, 110 (8), 1899–1910, DOI: 10.1002/jbm.b.35047.
- [10] JAIN A., DUVVURI L.S., FARAH S., BEYTH N., DOMB A.J., KHAN W., Antimicrobial polymers, Adv. Healthc. Mater., 2014, 3 (12), 1969–1985, DOI: 10.1002/adhm.201400418.
- [11] JAYAKUMAR R., PRABAHARAN M., REIS R.L., MANO J.F., Graft copolymerized chitosan-present status and applications, Carbohydrate Polymers, 2005, 62 (2), 142–158, DOI: 10.1016/j.carbpol.2005.07.017.
- [12] JOHNS J., RAO V., Characterization of natural rubber latex/ chitosan blends, Int. J. Polym. Anal. Charact., 2008, 13(4), 280–291, DOI: 10.1080/10236660802190104.
- [13] JOHNS J., RAO V., Mechanical properties and swelling behawior of cross-linked natural rubber/chitosan blends, Int. J. Polym. Anal. Charact., 2009, 14 (6), 508–526, DOI: 10.1080/10236660903072797.
- [14] KAMARUZZAMAN N.F., TAN L.P., HAMDAN R.H., CHOONG S.S., WONG W.K., GIBSON A.J., CHIVU A., PINA M.F., Antimicrobial polymers: the potential replacement of existing antibiotics, Int. J. Mol. Sci., 2019, 20 (11), 2747, DOI: 10.3390/ijms20112747.
- [15] KE C.L., DENG F.S., CHUANG C.Y., LIN C.H., Antimicrobial actions and applications of chitosan, Polymers, 2021, 13 (6), 904, DOI: 10.3390/polym13060904.
- [16] KHAN F., PHAM D.T.N., OLOKETUYI S.F., MANIVASAGAN P., OH J., KIM J.M., Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria, Colloids and Surfaces B: Biointerfaces, 2020, 185, 110627, DOI: /10.1016/j.colsurfb.2019.110627.
- [17] KULKA K., SIONKOWSKA A., Chitosan Based Materials in Cosmetic Applications: A Review, Molecules, 2023, 28 (4), DOI: 10.3390/molecules28041817.
- [18] KWEON D.K., Preparation and characteristics of chitosan-g-PDMS copolymer, Polymer Bulletin, 1998, 41, 645–651, DOI: 10.1007/S002890050413.
- [19] LI W.T., CHANG H.W., YANG W.C. et al., Immunotoxicity of Silver Nanoparticles (AgNPs) on the Leukocytes of Common Bottlenose Dolphins (Tursiops truncatus), Sci. Rep., 2018, 8 (1), 5593, DOI: 10.1038/s41598-018-23737-0.
- [20] LIU Y., WENA J., GAOA Y., LI T., WANGA H., YANA H., NIUA B., GUO R., Antibacterial graphene oxide coatings on polimer substrate, Applied Surface Science, 2018, 436, 624–630, DOI: 10.1016/j.apsusc.2017.12.006.
- [21] MING-ZHE L., LI-FENG W., LEI F., PU-WANG L., SI-DONG L., Preparation and properties of natural rubber/chitosan microsphere blends, Micro Nano Lett., 2017, 12 (6), 386–390, DOI: 10.1049/mnl.2016.0775.
- [22] MOLINARO G., LEROUX J.C., DAMAS J., ADAM A., Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials, Biomaterials, 2002, 23 (13), 2717–2722, DOI: 10.1016/S0142-9612(02)00004-2.
- [23] MUTHU M., GOPAL J., CHUN S., DEVADOSS A.J.P., HASAN N., SIVANESAN I., Crustacean waste-derived chitosan: Antioxidant properties and future perspectives, Antioxidants, 2021, 10 (2), 1–27, DOI: 10.3390/antiox10020228.
- [24] NARCISO F., CARDOSO S., MONGE N., LOURENÇO M., MARTIN V., DUARTE N., SANTOS C., GOMES P., BETTENCOURT A., RIBEIRO I.A.C., 3D-printed biosurfactant-chitosan antibacterial coating for the prevention of silicone-based associated infections, Colloids and Surfaces B: Biointerfaces, 2023, 230, 113486, DOI: 10.1016/j.colsurfb.2023.113486.
- [25] ORŁOWSKI P., KRZYŻOWSKA M., WINNICKA A., CHWALIBÓG A., SAWOSZ E., Toxicity of silver nanoparticles in monocytes and keratinocytes: potential to induce inflammatory reactions, Cent. Eur. J. Immunol., 2012, 37 (2), 123–130.
- [26] PANÁČEK A., KVÍTEK L., SMÉKALOVÁ M., VEČEŘOVÁ R., KOLÁŘ M., RÖDEROVÁ M., DYČKA F., ŠEBELA M., PRUCEK R., TOMANEC O., ZBOŘIL R., Bacterial resistance to silver nanoparticles and how to overcome it, Nat. Nanotechnol., 2018, 13 (1), 65–71, DOI: 10.1038/s41565-017-0013-y.
- [27] PONTES C., ALVES M., SANTOS C., RIBEIRO M.H., GONÇALVES L., BETTENCOURT A.F., RIBEIRO I.A.C., Can Sophorolipids prevent biofilm formation on silicone catheter tubes, Int. J. Pharm., 2016, 513 (1–2), 697–708, DOI: 10.1016/j.ijpharm.2016.09.074.
- [28] RATHNAYAKE I.U., ISMAIL H., DE SILVA C.R. et al., Antibacterial effect of Ag-doped TiO2 nanoparticles incorporated natural rubber latex foam under visible light conditions, Iranian Polymer Journal, 2015, 24, 1057–1068, DOI: 10.1007/s13726-015-0393-5.
- [29] RICARDO S.I.C., ANJOS I.I.L., MONGE N., FAUSTINO C.M.C., RIBEIRO I.A.C., A glance at antimicrobial strategies to prevent catheter-associated medical infections, ACS Infect. Dis., 2020, 6 (12), 3109–3130, DOI: 10.1021/acsinfecdis.0c00526.
- [30] RUTNAKORNPITUK M., NGAMDEE P., PHINYOCHEEP P., Preparation and properties of polydimethylsiloxane-modified chitosan, Carbohydrate Polymers, 2006, 63 (2), 229–237, DOI: 10.1016/j.carbpol.2005.08.063.
- [31] Standard EN 1186: Materials and articles in contact with foodstuffs. Plastics.
- [32] SUTTERLIN S., DAHLO M., TELLGREN-ROTH C., SCHAAL W., MELHUS A., High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species, J. Hosp. Infect., 2017, 96 (3), 256–261, DOI: 10.1016/j.jhin.2017.04.017.
- [33] VIJAYALAKSHMI R., JOBISH J., Mechanical properties of thermoplastic elastomeric blends of chitosan and natural rubber latex, J. Appl. Polym. Sci., 2008, 107, 2217–2223, DOI: 10.1002/app.27265.
- [34] YOSHIO A., SEKIGUCHI A., YASUO M., Antibacterial, Antifungal Silicone Rubber Composition, Pat. US 5466726, 1995.11.14.
- [35] YOUNES I., RINAUDO M., Chitin and chitosan preparation from marine sources. Structure, properties and applications, Marine Drugs, 2015, 13 (3), 1133–1174, DOI: 10.3390/md13031133.
- [36] ZHOU N., LIU Y., LI L., MENG N., HUANG Y., ZHANG J., WEI S., SHEN J., A new nanocomposite biomedical material of polymer/Clay–Cts–Ag nanocomposites, Current Applied Physics, 2007, 7 (1), e58–e62, DOI: 10.1016/j.cap.2006.11.016.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f91d1e94-ad16-48a9-868f-6c422a91aa25