Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 4 | 1383--1393
Tytuł artykułu

HEC-RAS and GIS based food plain mapping: A case study of Narai Drain Peshawar

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flood computer modeling is one of the recent practices which is used for the prediction of the food occurrence at diferent intervals of time. A study was conducted on Narai Drain Hayatabad, Peshawar, to produce food plain maps by integrating Arc-GIS with the Hydraulic Modeling software HEC-RAS. The area in the vicinity of Narai Drain was inundated due to the catastrophic food occurred in the year 2010, which caused huge damage to public property, livestock, communication, and infrastructure. In this study, the Narai Drain watershed was classifed into three watersheds, namely Narai Drain Upper, Lower, and Regi Drain. GIS technology was used to delineate the watersheds while the discharges were computed using the WinTR-20 mode. Expected rainfall depths were obtained by using Log-Pearson type III Distribution for diferent return periods (i.e., 2, 5, 10, 25, 50, 100, 200). The area inundated by the food was estimated by using HEC-RAS. These results were then incorporated in GIS to prepare food inundation maps. Maximum inundation occurred in the sensitive area of Narai Drain Lower for a 10-year return period. The integrated modeling approach used in this study was found very useful to delineate the area vulnerable to food with a good estimation of inundation depths at various discharge values. The results show that in the upper reach of the Narai Drain, most of the area lying near the food zone was safe for a 100-year return period, while the lower reach was vulnerable even for a return period of 10 years.
Wydawca

Czasopismo
Rocznik
Strony
1383--1393
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
  • Faculty of Plant Production Sciences, Department of Water Management, The University of Agriculture Peshawar, Peshawar, Pakistan
  • Global Change Impact Studies Centre, Ministry of Climate Change, Islamabad, Pakistan, shershah538@gmail.com
  • Faculty of Plant Production Sciences, Department of Water Management, The University of Agriculture Peshawar, Peshawar, Pakistan
  • Global Change Impact Studies Centre, Ministry of Climate Change, Islamabad, Pakistan
  • Global Change Impact Studies Centre, Ministry of Climate Change, Islamabad, Pakistan
  • Department of Agricultural Engineering, University of Engineering & Technology, Peshawar, Pakistan
Bibliografia
  • 1. Al-Kouri O, Al-Rawashdeh S, Sadoun B, Sadoun B, Pradhan B (2013) Geospatial modeling for sinkholes hazard map based on GIS & RS data. J Geogr Inf Syst 5(06):584–592
  • 2. Bao WM, Zhang XQ, Qu SM (2009) Dynamic correction of roughness in the hydrodynamic model. J Hydrodyn 21(2):255–263
  • 3. Bates PD (2012) Integrating remote sensing data with flood inundation models: how far have we got? Hydrol Process 26(16):2515–2521
  • 4. Bhagat M (2013) Parametric evalution for flood management. Int J Sci Eng Res 4(7):1147–1153
  • 5. Chapi K, Singh VP, Shirzadi A, Shahabi H, Bui DT, Pham BT, Khosravi K (2017) A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Model Softw 95:229–245
  • 6. Chow VT (1959) Open-channel hydraulics. McGraw-Hill, New York city
  • 7. Degiorgis M, Gnecco G, Gorni S, Roth G, Sanguineti M, Taramasso AC (2012) Classifiers for the detection of flood-prone areas using remote sensed elevation data. J Hydrol 470:302–315
  • 8. Federal flood commission islamabad (FFCI) (2014). Annual flood report, Ministry of water and power, Government of Pakistan. Accessed 08 March 2015.
  • 9. Fekete A (2009) Validation of a social vulnerability index in context to river-floods in Germany. Nat Hazard 9(2):393–403
  • 10. Hamid A, Gray DD, Viadero RC Jr, Fortney RH (2004) Channel geomorphology relationships for the beaver creek watershed. West Virginia University Libraries, West Virginia
  • 11. Kabiri R, Chan A, Bai R (2013) Comparison of SCS and green-ampt methods in surface runoff-flooding simulation for klang watershed in Malaysia. Open J Modern Hydrol 3(03):102–114
  • 12. Kazakis N, Kougias I, Patsialis T (2015) Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: application in Rhodope-Evros region, Greece. Sci Total Environ 538:555–563
  • 13. Khan AN, Khan SN, Ali A (2010) Analysis of damages caused by flood-2010 in district Peshawar. J Sc Tech Univ Peshawar 36:11–16
  • 14. Knebl M, Yang ZL, Hutchison K, Maidment D (2005) Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event. J Environ Manage 75(4):325–336
  • 15. Kowalzig J (2008) Climate, poverty, and justice: what the Poznan UN climate conference needs to deliver for a fair and effective global deal. Oxfam Policy Pract: Climate Change Resil 4(3):117–148
  • 16. Masoud BM, Hassanpour F (2013) Flood management of sistan river using levee. J Acad and Appl Stud 3(10):32–45
  • 17. Muhammad J, Khan GD (2015) Win TR-20 application using statistical approaches for long term prediction of peak runoff rates in smaller watersheds of Pakistan. Hydrol Cur Res 6(1):1–4
  • 18. Nikoo M, Ramezani F, Hadzima-Nyarko M, Nyarko EK, Nikoo M (2016) Flood-routing modeling with neural network optimized by social-based algorithm. Nat Hazards 82(1):1–24
  • 19. Pakistan metrological department (PMD),(2015) Peshawar. http://www.pmd.gov.pk/meteorogram/kpk.php?district=Peshawar&division=Peshawar. Accessed 10 March 2015
  • 20. Pradhan B, Shafiee M, Pirasteh S (2009) Maximum flood prone area mapping using RADARSAT images and GIS: kelantan river basin. Int J Geoinform 5(2):11–23
  • 21. Rahmati O, Pourghasemi HR, Zeinivand H (2016a) Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province. Iran Geocarto Int 31(1):42–70
  • 22. Rahmati O, Zeinivand H, Besharat M (2016b) Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomat Nat Haz Risk 7(3):1000–1017
  • 23. Sadeghi S, Rad RJ (2005) Floodplain Zoning in an Iranian urban watershed using HEC-RAS hydraulic model and arcview GIS. Water Energy Abstr 15(1):69–82
  • 24. Sarhadi A, Soltani S, Modarres R (2012) Probabilistic flood inundation mapping of ungauged rivers: linking GIS techniques and frequency analysis. J Hydrol 458:68–86
  • 25. Timbadiya PV, Patel PL, Porey PD (2011) Calibration of HEC-RAS model on prediction of flood for lower Tapi River, India. J Water Resour Prot 3(11):805–811
  • 26. USACE (1991) HEC-2: water surface profiles, user’s manual. U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, Calif
  • 27. USACE (2001) HEC-RAS: river analysis system, user’s manual. U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, Calif
  • 28. Yang J, Townsend RD, Daneshfar B (2006) Applying the HEC-RAS model and GIS techniques in river network floodplain delineation. Can J Civ Eng 33(1):19–28
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f8c31a13-5b7a-40a2-a3a3-293d641d127d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.