Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | Vol. 71, no. 1 | 247--260
Tytuł artykułu

DC resistivity inversion constrained by magnetic method through sequential inversion

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the inversion of geophysical data, an attempt is made to obtain a model with the best ft on the observed data. Unfortunately, the results are usually accompanied by non-uniqueness and ambiguity. These inversion problems can be reduced by inverting different geophysical datasets. Sequential inversion is one of the most common ways to integrate two or more geophysical datasets, to obtain a model that is compatible with all geophysical data, thus reducing the amount of ambiguity. This paper presents separate inversions of DC resistivity and magnetic data and sequential inversion of DC resistivity constrained by magnetic data. Here, the inverse model of magnetic data is considered the initial model for the sequential inversion of DC resistivity data. At first, the algorithm is applied to a synthetic model composed of four conductive and magnetized bodies, and the results show notable improvement for the resistivity model after sequential inversion, compared with the separate resistivity inversion model. Finally, encouraged by the results obtained in the synthetic case, the algorithm was applied to DC resistivity and magnetic datasets that were collected in the archeological area of old Pompeii city nearby Naples, Italy. The result of the sequential resistivity inversion model was notably superior to the corresponding resistivity model obtained from standard separate inversion.
Wydawca

Czasopismo
Rocznik
Strony
247--260
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
  • Institute of Geophysics, University of Tehran, Tehran, Iran
  • Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università di Napoli ‘Federico II’, Naples, Italy, Saeed.parnow@yahoo.com
  • Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università di Napoli ‘Federico II’, Naples, Italy
  • Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università di Napoli ‘Federico II’, Naples, Italy
  • Institute of Geophysics, University of Tehran, Tehran, Iran
Bibliografia
  • 1. Al-Garni MA (2011) Magnetic and DC resistivity investigation for groundwater in a complex subsurface terrain. Arab J Geosci 4(3–4):385–400
  • 2. Aydın I, Oksum E (2012) MATLAB code for estimating magnetic basement depth using prisms. Comput Geosci 46:183–188
  • 3. Bhattacharyya B (1964) Magnetic anomalies due to prism-shaped bodies with arbitrary polarization. Geophysics 29(4):517–531
  • 4. Boulanger O, Chouteau M (2001) Constraints in 3D gravity inversion. Geophys Prospect 49(2):265–280
  • 5. Cella F, Fedi M (2012) Inversion of potential field data using the structural index as weighting function rate decay. Geophys Prospect 60(2):313–336
  • 6. Dannowski G, Yaramanci U (1999) Estimation of water content and porosity using combined radar and geoelectrical measurements. Eur J Environ Eng Geophys 4(1):71–85
  • 7. Gallardo LA (2004) Joint two-dimensional inversion of geoelectromagnetic and seismic refraction data with cross-gradients constraint. University of Lancaster Lancaster
  • 8. Gallardo LA, Meju MA (2004) Joint two‐dimensional DC resistivity and seismic travel time inversion with cross‐gradients constraints. J Geophys Res: Solid Earth 109(B3)
  • 9. Gallardo LA, Meju MA (2011) Structure‐coupled multiphysics imaging in geophysical sciences. Rev Geophys 49(1)
  • 10. Ghari HA, Voge M, Bastani M, Pfaffhuber AA, Oskooi B (2020) Comparing resistivity models from 2D and 1D inversion of frequency domain HEM data over rough terrains: cases study from Iran and Norway. Explor Geophys 51(1):45–65
  • 11. Guillemoteau J, Sailhac P, Boulanger C, Trules J (2015) Inversion of ground constant offset loop-loop electromagnetic data for a large range of induction numbers. Geophysics 80(1):E11–E21
  • 12. Gündoğdu NY, Candansayar ME (2018) Three-dimensional regularized inversion of DC resistivity data with different stabilizing functionals. Geophysics 83(6):E399–E407
  • 13. Günther T, Rücker C, Spitzer K (2006) Three-dimensional modelling and inversion of DC resistivity data incorporating topography—II. Inversion. Geophys J Int 166(2):506–517
  • 14. Ji J (2012) Robust inversion using biweight norm and its application to seismic inversion. Explor Geophys 43(2):70–76
  • 15. Kamm J, Becken M, Pedersen LB (2013) Inversion of slingram electromagnetic induction data using a Born approximation. Geophysics 78(4):E201–E212
  • 16. Karavul C, Dedebali Z, Keskinsezer A, Demirkol A (2010) Magnetic and electrical resistivity image survey in a buried Adramytteion ancient city in Western Anatolia, Turkey. Int J Phys Sci 5(6):876–883
  • 17. Last B, Kubik K (1983) Compact gravity inversion. Geophysics 48(6):713–721
  • 18. Le CV, Harris BD, Pethick AM, Takougang EMT, Howe B (2016) Semiautomatic and automatic cooperative inversion of seismic and magnetotelluric data. Surv Geophys 37(5):845–896
  • 19. Li Y, Oldenburg DW (1996) 3-D inversion of magnetic data. Geophysics 61(2):394–408
  • 20. Li Y, Oldenburg DW (1998) 3-D inversion of gravity data. Geophysics 63(1):109–119
  • 21. Lines LR, Schultz AK, Treitel S (1988) Cooperative inversion of geophysical data. Geophysics 53(1):8–20
  • 22. Loke M. (2002) RES2DMOD ver. 3.01. Rapid 2D resistivity forward modelling using the finite-difference and finite-elements method. Geotomo Software. Manual
  • 23. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1. Geophys Prospect 44(1):131–152
  • 24. Loke MH, Dahlin T (2002) A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion. J Appl Geophys 49(3):149–162
  • 25. Marzán I, Martí D, Lobo A, Alcalde J, Ruiz M, Alvarez-Marrón J, Carbonell R (2021) Joint interpretation of geophysical data: Applying machine learning to the modeling of an evaporitic sequence in Villar de Cañas (Spain). Eng Geol 288:106126
  • 26. Menke W (2012) Geophysical data analysis: discrete inverse theory: MATLAB edition. Academic press
  • 27. Nappi R, Paoletti V, D’Antonio D, Soldovieri F, Capozzoli L, Ludeno G, Porfido S, Michetti AM (2021) Joint interpretation of geophysical results and geological observations for detecting buried active faults: the case of the “Il Lago” Plain (Pettoranello del Molise, Italy). Remote Sens 13(8):1555
  • 28. Noh K, Chung Y, Seol SJ, Byun J, Uchida T (2014) Three-dimensional inversion of CSEM data: Water leak detection using a small-loop EM method. J Appl Geophys 102:134–144
  • 29. Nunes TM, Barbosa VCF, Silva JBC (2008) Magnetic basement depth inversion in the space domain. Pure Appl Geophys 165(9):1891–1911
  • 30. Ogaya X, Alcalde J, Marzán I, Ledo J, Queralt P, Marcuello A, Martí D, Saura E, Carbonell R, Benjumea B (2016) Joint interpretation of magnetotelluric, seismic, and well-log data in Hontomín (Spain). Solid Earth 7(3):943–958
  • 31. Paoletti V, Ialongo S, Florio G, Fedi M, Cella F (2013) Self-constrained inversion of potential fields. Geophys J Int 195(2):854–869
  • 32. Parnow S, Oskooi B, Florio G (2021) Improved linear inversion of low induction number electromagnetic data. Geophys J Int 224(3):1505–1522
  • 33. Pérez-Flores M, Méndez-Delgado S, Gómez-Treviño E (2001) Imaging low-frequency and dc electromagnetic fields using a simple linear approximation. Geophysics 66(4):1067–1081
  • 34. Pham LT, Oksum E, Gómez-Ortiz D, Do TD (2020) MagB_inv: a high performance Matlab program for estimating the magnetic basement relief by inverting magnetic anomalies. Comput Geosci 134:104347
  • 35. Pilkington M (2009) 3D magnetic data-space inversion with sparseness constraints. Geophysics 74(1):L7–L15
  • 36. Portniaguine O, Zhdanov MS (1999) Focusing geophysical inversion images. Geophysics 64(3):874–887
  • 37. Sasaki Y (1994) 3-D resistivity inversion using the finite-element method. Geophysics 59(12):1839–1848
  • 38. Singh A, Mishra PK, Sharma S (2019) 2D cooperative inversion of direct current resistivity and gravity data: a case study of uranium bearing target rock. Geophys Prospect 67(3):696–708
  • 39. Sultan SA, Mansour SA, Santos FM, Helaly AS (2009) Geophysical exploration for gold and associated minerals, case study: Wadi El Beida area, South Eastern Desert, Egypt. J Geophys Eng 6(4):345–356
  • 40. Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. N Y 1(30):487
  • 41. Varfinezhad R, Oskooi B, Fedi M (2020) Joint inversion of DC resistivity and magnetic data, constrained by cross gradients, compactness and depth weighting. Pure Appl Geophys 177(9):4325–4343
  • 42. Varfinezhad R, Parnow S, Kamkar Rouhani A (2019) 2-D inversion of magnetic data using compactness and depth weighting constraints: two case studies on gas transmission pipe and archeological data. J Earth Space Phys 45(3):507–521
  • 43. Vitale A, Fedi M (2020) Self-constrained inversion of potential fields through a 3D depth weighting. Geophysics 85(6):G143–G156
  • 44. Zhang F, Dai R, Liu H (2014) Seismic inversion based on L1-norm misfit function and total variation regularization. J Appl Geophys 109:111–118
  • 45. Zhang G, Lü Q-T, Zhang G-B, Lin P-R, Jia Z-Y, Suo K (2018) Joint interpretation of geological, magnetic, AMT, and ERT data for mineral exploration in the Northeast of Inner Mongolia, China. Pure Appl Geophys 175(3):989–1002
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f89056c1-e82e-4064-a86e-0559e394e5fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.