Czasopismo
2022
|
R. 98, nr 4
|
77--80
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Wpływ różnych odległości zachodzenia na siebie w powiększonych zwężeniach talii w czujniku światłowodowym Mach Zehnder Interferometer do monitorowania temperatury cieczy
Języki publikacji
Abstrakty
A fiber optic sensor (FOS) based on the Mach-Zehnder interferometer (MZI) suitable for monitoring the liquid temperature is proposed and demonstrated. The sensor head was formed by a single mode–multimode–single mode (SMS) fiber structure through arc fusion splicing. The intermodal interference is achieved by two waist- enlarged tapers (WET) at the coupling points of the multimode fiber (MMF) and single mode fibers (SMF). The sensitivity of the sensor was determined based on the overlap distance for waist enlargement, tested in different temperatures of liquid. Five different overlap distances set in the conventional fiber splicer were 30 µm, 60 µm, 90 µm, 120 µm and 150 µm. The highest sensitivity of 0.0984 nm/℃ was produced by the SMS sensor with overlap distance of 150 µm. Such easily fabricated, cost-effective and temperature-immune fiber interferometer could be used for high temperature sensing applications. Manipulation of the overlap distance contributes to the advancement of the device.
Zaproponowano i zademonstrowano czujnik światłowodowy (FOS) oparty na interferometrze Mach-Zehnder (MZI) odpowiedni do monitorowania temperatury cieczy. Głowica czujnika została utworzona przez strukturę włókna jednomodowego-wielomodowego-jednomodowego (SMS) poprzez spawanie łukowe. Intermodalność intermodalna jest uzyskiwana dzięki dwóm zwężeniom powiększonym w talii (WET) w punktach łączenia włókien wielomodowych (MMF) i jednomodowych (SMF). Czułość czujnika została określona na podstawie odległości zakładki dla powiększenia talii, badanej w różnych temperaturach cieczy. Pięć różnych odległości nakładania ustawionych w konwencjonalnej spawarce włókien wynosiło 30 µm, 60 µm, 90 µm, 120 µm i 150 µm. Największą czułość 0,0984 nm/℃ uzyskał czujnik SMS z odległością nakładania 150 µm. Taki łatwy w produkcji, opłacalny i odporny na temperaturę interferometr światłowodowy może być używany w aplikacjach z czujnikami wysokiej temperatury. Manipulacja odległością nakładania się przyczynia się do postępu urządzenia.
Czasopismo
Rocznik
Tom
Strony
77--80
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Centre for Telecommunication Research & Innovation (CeTRI), Faculty of Electronics Engineering and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, hanim@utem.edu.my
- Centre for Telecommunication Research & Innovation (CeTRI), Faculty of Electronics Engineering and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka
autor
- Centre for Telecommunication Research & Innovation (CeTRI), Faculty of Electronics Engineering and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka
autor
- Centre for Telecommunication Research & Innovation (CeTRI), Faculty of Electronics Engineering and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka
autor
- Centre for Telecommunication Research & Innovation (CeTRI), Faculty of Electronics Engineering and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka
autor
- Centre for Telecommunication Research & Innovation (CeTRI), Faculty of Electronics Engineering and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka
autor
- Centre for Telecommunication Research & Innovation (CeTRI), Faculty of Electronics Engineering and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka
Bibliografia
- [1] H. A. Razak, N. H. Sulaiman, H. Haroon, and A. S. Mohd Zain, “A fiber optic sensor based on Mach-Zehnder interferometer structure for food composition detection,” Microw. Opt. Technol. Lett., vol. 60, no. 4, 2018
- [2] Y. Noh et al., “Image-Based Optical Miniaturized Three-Axis Force Sensor for Cardiac Catheterization,” IEEE Sens. J., vol. 16, no. 22, pp. 7924–7932, Nov. 2016
- [3] G. B. Kashaganova, P. Komada, and G. Karnakova, “Fiber sensors based on the Bragg gratings in security systems,” Prz. Elektrotechniczny, vol. 96, no. 9, 2020
- [4] F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in Mach-Zehnder interferometer for refractive index and temperature sensing,” IEEE Photonics Technol. Lett., vol. 28, no. 18, pp. 1968–1971, 2016
- [5] L. Cai, Y. Zhao, and X. G. Li, “Applications of modal interferences in optical fiber sensors based on mismatch methods,” Instrumentation Science and Technology, vol. 43, no. 1. pp. 1–20, 2015
- [6] M. Shao, X. Qiao, H. Fu, H. Li, J. Zhao, and Y. Li, “A Mach-Zehnder interferometric humidity sensor based on waist-enlarged tapers,” Opt. Lasers Eng., vol. 52, no. 1, pp. 86–90, 2014
- [7] B. H. Lee et al., “Interferometric fiber optic sensors,” Sensors, vol. 12, no. 3, pp. 2467–2486, 2012
- [8] J. Shi, S. Xiao, L. Yi, and M. Bi, “A sensitivity-enhanced refractive index sensor using a single-mode thin-core fiber incorporating an abrupt taper,” Sensors, vol. 12, no. 4, pp. 4697–4705, 2012
- [9] J. Villatoro, V. Finazzi, G. Badenes, and V. Pruneri, “Highly sensitive sensors based on photonic crystal fiber modal interferometers,” J. Sensors, vol. 2009, 2009
- [10] J. Zhou et al., “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sensors Actuators, B Chem., 2015
- [11] X. hu Fu et al., “A tension insensitive PbS fiber temperature sensor based on Sagnac interferometer,” Optoelectron. Lett., 2017
- [12] A. R. Hanim et al., “Modeling Mach Zehnder Interferometer (MZI) modulator on silicon-on-insulator (SOI),” J. Telecommun. Electron. Comput. Eng., vol. 8, no. 1, 2016
- [13] F. Wang, L. Zhang, T. Ma, X. Wang, K. Yu, and Y. Liu, “A high-sensitivity sensor based on tapered dispersion compensation fiber for curvature and temperature measurement,” Opt. Commun., vol. 481, 2021
- [14] C. Li et al., “Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating,” Sensors Actuators, A Phys., vol. 245, 2016
- [15] P. J. Rivero, J. Goicoechea, and F. J. Arregui, “Layer-by-layer nano-assembly: A powerful tool for optical fiber sensing applications,” Sensors (Switzerland), vol. 19, no. 3. 2019
- [16] J. Villatoro and D. Monzón-Hernández, “Low-cost optical fiber refractive-index sensor based on core diameter mismatch,” J. Light. Technol., vol. 24, no. 3, pp. 1409–1413, 2006
- [17] H. Sun et al., “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol., vol. 18, no. 6, pp. 425–429, 2012
- [18] H. Wang et al., “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun., vol. 364, pp. 191–194, 2016
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f86bac84-f192-4a15-a196-49b678270df8