Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 14, no 4 | 284--297
Tytuł artykułu

Model Research on the Influence of Bearing Preload Change on the Frequency and Form of Natural Vibrations of the Spindle System

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents an FEM model of the spindle system, in which angular contact ball bearings with active preload control are used. This model allowed determining the frequency and form of natural vibrations of the system. The model was prepared using the Abaqus programming environment. Various bearing preload states were adopted during the tests. It was shown that the spindle system is sensitive to the changes in the stiffness of bearing supports. The tests conducted using models were then verified on a real stand. First of all, using the external excitation from an electromagnetic exciter, the frequency range of resonance vibrations of the spindle system was determined. Then, the amplitude - frequency characteristics of the tested spindle were determined at various bearing preload values. A general operation scheme of the control system for the active change of the preload value of the angular contact ball bearings during the work of the spindle system was proposed.
Wydawca

Rocznik
Strony
284--297
Opis fizyczny
Bibliogr. 38 poz., fig., tab.
Twórcy
  • Wroclaw University of Science and Technology, Department of Machine Tools and Mechanical Technologies, ul. Lukasiewicza 5, Building B-4, Wrocław, Poland, pawel.turek@pwr.edu.pl
  • Wroclaw University of Science and Technology, Department of Machine Tools and Mechanical Technologies, ul. Lukasiewicza 5, Building B-4, Wrocław, Poland
Bibliografia
  • 1. Alfares, M.A., Elsharkawy, A.A. Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system. Journal of Materials Processing Technology, 136(1–3), 2003, 48–59.
  • 2. Altintas Y., Cao Y. Virtual design and Optimization of machine tool spindles. Annals of the CIRP, 54(1), 2005, 379–382.
  • 3. Cai, J., Jiang, S.Y. Theoretical analysis of preload of high-speed machine spindle bearing. Precision Manufacturing and Automation, 3, 2008, 29–32.
  • 4. Chen J.S., Chen K. W. Bearing load analysis and control of a motorized high speed spindle. International Journal of Machine Tools & Manufacture, 45, 2005, 1487–1493.
  • 5. Chen, J.S., Hwang, Y.W. Centrifugal force induced dynamics of a motorized high-speed spindle. International Journal of Advanced Manufacturing Technology, 30, 2006, 10–19.
  • 6. Ciou Y.S, Lee C.Y. Controllable preload spindle with a piezoelectric actuator for machine tools. International Journal of Machine Tools and Manufacture, 139, 2019, 60-63.
  • 7. Hadi Hosseinabadi A.H., Altintas Y. Modeling and active damping of structural vibration in machine tools. CIRP Journal of Manufacturing Science and Technology, 7, 2014, 246–257.
  • 8. Harris T.A. Rolling bearing analysis (4th Edition). John Wiley and Sons, New York, 2001.
  • 9. Harris T.A., Kotzalas M.N. Rolling Bearing Analysis, Essential Concepts of Bearing Technology. Taylor&Francis Group, New York, 371, 2007.
  • 10. Hou Y, Wang S, Han Z. The dynamics modelling and simulation for coupled double-rotor spindle system of high speed grinder. Przeglad Elektrotechniczny, 89, 2013, 25–28.
  • 11. Hu, G., Zhang, D., Goa W. Study on variable pressure/position preload spindle bearing system by using piezoelectric actuators under close-loop control. International Journal of Machine Tools and Manufacture 125, 2018, 68–88.
  • 12. Hwang Y. K., Lee Ch. M., 2010, Development of a newly structured variable preload control device for a spindle rolling bearing by using an electromagnet, International Journal of Machine Tools & Manufacture, 50, 253–259.
  • 13. Hwang, Y. Park, I. Paik, K. Development of a variable preload spindle by using and electromagnetic actuator. International Journal of Precision Engineering and Manufacturing 15(2), 2014, 201–207.
  • 14.Jedrzejewski J., Kwasny W, Kowal Z, Winiarski Z. Development of the Modelling and Numerical Simulation of the Thermal Properties of Machine Tools. Journal of Machine Engineering, 14(3) 2014, 5-20.
  • 15.Jędrzejewski J., Kwasny W. Modelling of angular contact ball bearings and axial displacements for high-speed spindles. CIRP Annals–Manufacturing Technology, 59, 2010, 377–382.
  • 16.Jiang S., Mao H. Investigation of Variable Optimum Preload for a Machine Tool Spindle. International Journal of Machine Tools and Manufacture, 50, 2010, 19–28.
  • 17. Kaczor, J., Raczynski, A. The effect of preload of angular contact ball bearings on durability of bearing system. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 229, 6, 2015, 723–732.
  • 18. Kosmol J. An extended contact model of the angular bearing, Journal of Theoretical and Applied Mechanics, 57(1), 2019, 59–72.
  • 19. Li H., Shin, Y.C. Integrated dynamic thermo-mechanical modeling of high speed spindles, part 1: Model development. Journal of Manufacturing Science and Engineering, 126(1), 2004, 148–158.
  • 20. Li J.D., Zhu, Y.S., Xiong, Q.Q., Yan, K. Research on axial dynamic stiffness of fixed-pressure spindle. Journal of Xi’an Jiaotong University, 48(10), 2014, 126–130.
  • 21. Li T., Kolar, P., Li, X. et al. Research Development of Preload Technology on Angular Contact Ball Bearing of High Speed Spindle: A Review. International Journal of Precision Engineering and Manufacturing, 21, 2020, 1163–1185.
  • 22. Lin C. W., Tu J.F. Model-based Design of Motorized Spindle Systems to Improve Dynamic Performance at High Speeds. Journal of Manufacturing Processes, 9, 2007, 94–108.
  • 23. Nye T.W. Active control of bearing preload using piezoelectric translators. Nasa, 1, 1990, 259–271.
  • 24. Parus, A, Chodzko M., Hoffman M. Elimination of self-excited vibrations using an active machining chuck. Modelowanie inzynierskie 42, 2011, 325– 332, (in Polish).
  • 25. Smolnicki T. Physical aspects of coherence of large roller bearings and deformable support structures. Oficyna wydawnicza Politechniki Wroclawskiej, Wroclaw, 2002, (in Polish).
  • 26. Tönshoff, H.; Denkena, B.; Götz, T. Piezoelectric Actuator Based Preload Control Unit for Machine Tool Spindles. Production Engineering 9, 2002, 117–122.
  • 27. Tu J.F., Stein J.L. Active thermal preload regulation for machine tool spindles with rolling element bearings. Journal of Manufacturing Science and Engineering, 118(4), 1996, 499–505.
  • 28. Turek P., Skoczynski W., Stembalski M. Comparison of methods for adjusting and controlling the preload of angular-contact bearings. Journal of Machine Engineering 16(2), 2016, 71–85.
  • 29. Turek P., Skoczynski W., Stembalski M. Development of fem model of an angular contact ball bearing with its experimental verification. Journal of Machine Engineering 19(4), 2019, 58–69.
  • 30. Wu W., Li X., Xu F., Hong J., Li Y. Investigating effects of non-uniform preload on the thermal characteristics of angular contact ball bearing through simulations. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology, 228, 2014, 667–681.
  • 31. Xiaohu L., Huanfeng L., Yanfei Z., Jun H. Investigation of non-uniform preload on the static and rotational performances for spindle bearing system. International Journal of Machine Tools and Manufacture, 106, 2016, 11–21.
  • 32. Xu T., Xu G., Zhang Q., Hua C., Tan H., Zhang S., et al. A preload analytical method for ball bearings utilizing bearing skidding criterion. Tribology International, 67, 2013, 44–50.
  • 33. Yang Y., Cai L. G., Zhuo X., Wang Y. D., Liu Z. F. Theoretical research on whirl frequency of high-speed spindle with different preload methods. Journal of Beijing University of Technology, 41(6), 2015, 809–815.
  • 34. Zhang J., Fang B., Zhu Y., Hong J. A comparative study and stiffness analysis of angular contact ball bearing under different preload mechanisms, Mechanism and Machine Theory, 115, 2017, 1-17.
  • 35. Zhang J., Fang B., Hong J., Zhu Y. Effect of preload on ball-raceway contact state and fatigue life of angular contact ball bearing. Tribology International, 114, 2017, 365–372.
  • 36. Electronic supplies for Piezomechanics: Technical data, Piezomechanik GmbH, katalog produktow, http://www.piezomechanik.com/fileadmin/filestorage/Kataloge/ en/Electronic_Supplies_2013-12-05.pdf, accessed 26.03.2019.
  • 37. Piezo mechanical and electrostrictive stack and ring actuators: Product Range & Technical Data – katalog produktow, http://piezomechanik.com/ fileadmin /filestorage /Kataloge/en/ Piezomechanik_Product_range_Low_2017_WEB.pdf, accessed 26.03.2019.
  • 38. Super precision bearings, FAG, MATNR 036884715-0000/SP 1/GB-D/2016061.5/Printed in Germany by Mohn
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f7f4e7e5-a772-4282-8da1-e0819ef1824f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.