Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Nr 46 | 131--139
Tytuł artykułu

The Nörlund Orlicz space of double gai sequences

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let x2 denotes the space of all double gai sequences. Let 2denotes the space of all double analytic sequences. This paper is devoted to a study of the general properties of Nörlund double Orlicz space of gai sequence space ŋ (x2M) and x2M and Nörlund double Orlicz space of analytic sequence space ŋ (ᴧ2M) and 2M).
Wydawca

Rocznik
Tom
Strony
131--139
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Department of Mathematics SASTRA University Tanjore-613 401, India, nsmaths@yahoo.com
autor
Bibliografia
  • [1] Apostol T., Mathematical Analysis, Addison-Wesley, London 1978.
  • [2] Basarir M., Solancan O., On some double sequence spaces, J. Indian Acad. Math., 21(2)(1999), 193-200.
  • [3] Bektas C., Altin Y., The sequence space ¿M (p, q, s) on seminormed spaces, Indian J. Pure Appl. Math., 34(4)(2003), 529-534.
  • [4] Bromwich T.J.I’A., An Introduction to the Theory of Infinite Series, Macmillan and Co.Ltd., New York 1965.
  • [5] Hardy G.H., On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19(1917), 86-95.
  • [6] Krasnoselskii M.A., Rutickii Y.B., Convex Functions and Orlicz Spaces, Gorningen, Netherlands 1961.
  • [7] Lindenstrauss J., Tzafriri L., On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
  • [8] Maddox I.J., Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc., 100(1)(1986), 161-166.
  • [9] Moricz F., Extentions of the spaces c and c0 from single to double sequences, Acta. Math. Hung., 57(1-2)(1991), 129-136.
  • [10] Moricz F., Rhoades B.E., Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104 (1988), 283-294.
  • [11] Mursaleen M., Khan M.A., Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Math., Vol. XXXII, (1999), 145-150.
  • [12] Nakano H., Concave modu(ars, J. Math. Soc. Japan, 5(1953), 29-49.
  • [13] Orlicz W., Über Raume (Lm), Bull. Int. Acad. Polon. Sci. A, (1936), 93-107.
  • [14] Parashar S.D., Choudhary B., Sequence spaces defined by Orlicz func¬tions, Indian J. Pure Appl. Math., 25(4)(1994), 419-428.
  • [15] Rao K.C., Subramanian N., The Orlicz space of entire sequences, Int. J. Math. Math. Sci., 68(2004), 3755-3764.
  • [16] Ruckle W.H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
  • [17] Tripathy B.C., On statistically convergent double sequences, Tamkang J. Math., 34(3)(2003), 231-237.
  • [18] Tripathy B.C., Et M., Altin Y., Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Anal. Appl., 1(3)(2003), 175-192.
  • [19] Turkmenoglu A., Matrix transformation between some classes of double sequences, J. Inst. Math. Comput. Sci., Math. Ser., 12(1)(1999), 23-31.
  • [20] KAMTHAN P.K., Gupta M., Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York 1981.
  • [21] Gökhan A., Colak R., The double sequence spaces cP2(p) and cPB2 (p), Appl. Math. Comput., 157(2)(2004), 491-501.
  • [22] Gökhan A., Colak R., Double sequence spaces l∞2, ibid., 160(1)(2005), 147-153.
  • [23] Zeltser M., Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
  • [24] Mursaleen M., Edely O.H.H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1)(2003), 223-231.
  • [25] Mursaleen M., Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2)(2004), 523-531.
  • [26] Mursaleen M., Edely O.H.H., Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293(2)(2004), 532-540.
  • [27] Altay B., Basar F., Some new spaces of double sequences, J. Math. Anal. Appl., 309(1)(2005), 70-90.
  • [28] Basar F., Sever Y., The space Lp of double sequences, Math. J. Okayama Univ., 51(2009), 149-157.
  • [29] SUBRAMANIAN N., Misra U.K., The semi normed space defined by a double gai sequence of modulus function, Fasc. Math., 45(2010), 111-120.
  • [30] Kizmaz H., On certain sequence spaces, Cand. Math. Bull., 24(2)(1981), 169-176.
  • [31] Hardy G.H., Divergent Series, Oxford at the Clarendon Press 1949.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f7cdedfe-9234-4105-8bf7-14792460142e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.