Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | R. 95, nr 6 | 56--65
Tytuł artykułu

Application of a new meta-heuristic algorithm using egyptian vulture optimization for economic

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Zastosowanie nowego meta-heurystycznego algorytmu egipskiego sępa do optymalizacji ekonomicznego rozsyłu energii
Języki publikacji
EN
Abstrakty
EN
The industrialization and the growth of the population are the first factors for which the consumption of electrical energy increases regularly, which implies an increase of the cost and a degradation of the natural environment, so we need to solve the technical and economic dispatching problems. This paper presents, for the first time, the basis of EVOA approach in economic dispatching problems (EDP).,This approach is proposed to solve the non-convex and non-continuous EDP., The effectiveness of the proposed method is examined and validated by carrying out extensive test systems using three, six and fifteen generating units. Numerical results show that the EVOA method has a good convergence property, The result shows that the proposed method can reliably handle complex objective optimization problems in strong and effective way the generation costs tested by the EVOA method are lower than other optimization algorithms reported in literature.
PL
W artykule zaprezentowano podstawy metody EVOA zastosowanej do rozwiązania problemu ekonomicznego rozsyłu energii EDP. Metoda stosowana jest do rozwiązania problemu nieciągłego EDP. Sprawdzono ją dla układów 3, 6 I 15 generatorów.
Wydawca

Rocznik
Strony
56--65
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
  • Faculty of electrical engineering, USTO-MB. B.P 1505 El M’naouar, Oran, 31000, Algeria, Laboratory of Sustainable Development of Electrical Energy LDDEE, si_tayeb12@yahoo.fr
  • Unité de Recherche Appliquée en Energies Renouvelables, URAER Centre de Développement des Energies Renouvelables, CDER 47133, Ghardaïa, Algeria
  • Faculty of electrical engineering, USTO-MB. B.P 1505 El M’naouar, Oran, 31000, Algeria, Laboratory of Sustainable Development of Electrical Energy LDDEE, hbouzeboudja@yahoo.fr
Bibliografia
  • [1] Irina C; Elias K “Recent methodologies and approaches for the economic dispatch of generation in power systems” International Transactions on Electrical Energy Systems Int.trans.Electr.Energ. Syst. 2013; 23:1002–1027 DOI: 10.1002/etep.1635.
  • [2] Shah-Hosseini, H. ‘‘The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. International Journal of Bio-Inspired Computation 1(1/2), 71–79 (2009) DOI:10.1504/IJBIC.2009.022775.
  • [3] U. Güvenç, ‘‘Combined Economic and Emission Dispatch solution using Genetic Algorithm based on similarity crossover,” Scientific Research and Essays, vol.5, no. 17, pp. 2451–2456, 2010.
  • [4] Hemamalini S, Simon SP. “Dynamic economic dispatch with valve-point effect using maclaurin series based lagrangian method”. Int J Comput Appl 2010;17:60–7.
  • [5] Yang, X.-S. ‘‘A New Metaheuristic Bat-Inspired Algorithm” NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010) DOI10.1007/978-3-642-12538-6_6.
  • [6] Karaboga, D. ‘‘An idea based on honey bee swarm for numerical optimization”. Technical Report TR06, Erciyes University (October 2005).
  • [7] Kashan, H.A. ‘‘League Championship Algorithm: A New Algorithm for Numerical Function Optimization”. In: Proceedings of the 2009 International Conference of Soft Computing and Pattern Recognition (SOCPAR 2009), pp. 43– 48. IEEE Computer Society, Washington, DC (2009) DOI:10.1109/SoCPaR.2009.21.
  • [8] Ehsan A; Mahmood J “An improved cuckoo search algorithm for power economic load dispatch” International Transactions on Electrical Energy Systems Int.trans.Electr.Energ. Syst. 2015; 25:958–975; 26:49-78 DOI: 10.1002/etep.1878.
  • [9] Subbaraj P, Rengaraj R, Salivahanan S, Senthilkumar T. Parallel particle swarm optimization with modified stochastic acceleration factors for solving large scale economic dispatch problem. Int J Elect Power Energy Syst 2010; 32:1014–23. DOI.org/10.1016/j.ijepes.2010.02.003.
  • [10] Gandomi, A.H., Alavi, A.H.: “Krill Herd Algorithm: A New BioInspired Optimization Algorithm ” . Communications in Nonlinear Science and Numerical Simulation Volume 17, Issue 12, December 2012, Pages 4831–4845 DOI.org /10.1016 /j.cnsns. 2012. 05. 010
  • [11] Liang, Y.-C., Josue, R.C. ‘‘Virus Optimization Algorithm for Curve Fitting Problems. In:IIE Asian Conference (2011)
  • [12]Tayarani-N, M.H., Akbarzadeh-T, M.R. ‘‘Magnetic Optimization Algorithms a new synthesis.In: IEEE Congress on Evolutionary Computation, CEC 2008, IEEE World Congress on Computational Intelligence, June 16, pp. 2659–2664 (2008) DOI: 10.1109/CEC.2008.463115
  • [13] Meng K, Wang HG, Dong Z, Wong KP. “Quantum-inspired particle swarm optimization for valve-point economic load dispatch”. IEEE Trans Power Syst 2010; 25:215–22. DOI: 10.1109/TPWRS.2009.2030359.
  • [14]Geem, Z.W., Kim, J.H., Loganathan, G.V. ‘‘A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60– 68 (2001) DOI: 10.1177 /003754970107600201.
  • [15] Belkacem M; Kamel S “Interactive gravitational search algorithm and pattern search algorithm s for practical dynamic economic dispatch” International Transactions on Electrical Energy Systems Int. Trans. Electr. Energ. Syst.2015; 25:2289– 2309 DOI: 10.1002/etep.1961.
  • [16] Sun J, Fang W, Wang D, Xu W. “Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method”. Energy Convers Manage 2009 ;50: 29672975. DOI.org/ 10.1016/j. enconman.2009.07.015.
  • [17] Krohling RA. Gaussian swarm‘‘A novel particle swarm optimization algorithm. In: Proceedings of the IEEE conference on cybernetics and intelligent systems (CIS), Singapore 2004, p. 372–6. DOI: 10.1109/ICCIS.2004.1460443.
  • [18] Higashi N, Iba H. ‘‘Particle swarm optimization with Gaussian mutation”. In: Proceedings of the IEEE swarm intelligence symposium, Indianapolis, IN, USA; 2003. p. 72–9. DOI: 10.1109/SIS.2003.1202250.
  • [19] Coelho LS, Krohling RA. ‘‘Predictive controller tuning using modified particle swarm optimisation based on Cauchy and Gaussian distributions. In: Soft Computing: Methodologies and Applications, Springer Engineering series in Advances in Soft Computing; 2006. DOI: 10.1007/3-540-32400-3_22.
  • [20] Bhattacharya A, Chattopadhyay PK. Biogeography-based optimization for different economic load dispatch problems. IEEE Trans Power Syst 2010; 5:1064–77. DOI: 10.1109 / TPWRS.2009. 2034525.
  • [21] Coelho LS, Herrera BM. ‘‘Fuzzy modeling using chaotic particle swarm approaches applied to a yo-yo motion system. IEEE Trans Indust Electron 2006. DOI: 10.1109/FUZZY.2006.1682018.
  • [22]Secui Dinu Calin. A new modified artificial bee colony algorithm for the economic dispatch problem. Energy Convers Manag (Elsevier) 2015; 89 : 43-62.
  • [23] Xia X, Elaiw A. “Optimal dynamic economic dispatch of generation”: a review. Elect Power Syst Res 2010; 80:975–86. DOI.org/10.1016/j.epsr.2009.12.012.
  • [24] Sinha N, Chakrabarti R, Chattopadhyay PK. ‘‘Evolutionary programming techniques for economic load dispatch. IEEE Trans EvolComput 2003;7(1):83–94.
  • [25] Park JB, Lee KS, Shin JR, Lee KY. ‘‘A particle swarm optimization for economic dispatch with nonsmooth cost functions ”. IEEE Trans Power Syst 2005;20 (1) :34–42. DOI: 10.1109 / TPWRS .2004.831275.
  • [26] Uma S Beaulah M “Analysis and optimization of economic load dispatch using soft computing techniques” IEEE Trans Power Syst 2016 DOI: 10.1109/ICEEOT.2016.7755472.
  • [27] Pereira-Neto A, Unsihuay C, Saavedra OR. ‘‘Efficient evolutionary strategy optimisation procedure to solve the nonconvex economic dispatch problem with generator constraints”. IEEE Proc Gener Transm Distrib 2005;152(5):653–60. DOI: 10.1049/ip-gtd:20045287.
  • [28] Niknam T. Doagou M, H Zeinoddini, Meymand H.” A new particle swarm optimization for non-convex economic dispatch “ Eur Trans Electr Power 2010;21(1):656-79 DOI: 10.1002/etep.468
  • [29] Gaing ZL. ‘‘Closure to Discussion of Particle swarm optimization to solving the economic dispatch considering the generator constraints”. IEEE Trans Power Syst 2004;19(4):2122–3. DOI: 10.1109/TPWRS.2004.831708.
  • [30] Meng K, Wang HG, Dong Z, Wong KP. Quantum-inspired particle swarm optimization for valve-point economic load dispatch. IEEE Trans Power Syst 2010;25:215–22. DOI: 10.1109/TPWRS.2009.2030359.
  • [31] Subbraj P,Rengaraij R, Salivahanan S, Senthikumar TR.”Particle swarm optimization with modified stochastic acceleration facrors solving large scale economic dispatch problem” .Electr Power Energy syst2010;32:101423.DOI.org/10.1016 /j.ijepes .2010.02.003.
  • [32] Kameswara.R, Rao; P. Srinivas; M. S. M Divakar; G S N.M.Venkatesh.« Artificialbeecolony optimization for multi objective economic load dispatch of a modern power system » IEEE Conference Publications 2016 4097 4100.
  • [33] Dilip K, Nandhini M “Adapting Egyptian Vulture Optimization Algorithm for Vehicle Routing Problem” International Journal of Computer Science and Information Technologies, (IJCSIT) Vol. 7 (3), 2016, 1199-1204 DOI: 10.15640/jcsit.
  • [34] Chiranjib Sur, Sanjeev Sharma, and Anupam Shukla “Egyptian Vulture Optimization Algorithm – A New Nature Inspired Metaheuristics for Knapsack Problem” P. Meesad et al. (Eds.): IC2IT2013, AISC 209, pp. 227 237 -2013 DOI: 10.1007/978-3642-37371-8_26.
  • [35] Z.-L. Gaing, “Particle swarm optimization to solving the economic dispatch considering the generator constraints,” IEEE Trans. Power Systems, vol. 18, no. 3, pp. 1187-1195, Aug. 2003. DOI: 10.1109 / TPWRS .2003.814889.
  • [36] Victoire .T and A. E. Jeyakumar, “Discussion of particle swarm optimization to solving the economic dispatch considering the generator constraints,” IEEE Trans. Power Systems, vol. 19, no.4,pp.2121-2123,Nov.2004. DOI: 10.1109/TPWRS.2004.831708.
  • [37] Amiri M, Khanmohammadi S, Badamchizadeh MA. Floating search space: A New Idea for Efficient Solving the Economic and Emission Dispatch Problem. Energy 2018;158 :564-579.
  • [38] Victoire T, Jeyakumar A E. Hybrid PSO-SQP for economic dispatch with valve-point effect. Electric Power Systems Research, 2004, 71(1): 51–59.
  • [39] Sinha N, Chakrabarti R, Chattopadhyay P K. Evolutionary programming techniques for economic load dispatch. IEEE Transactions on Evolutionary Computation, 2003, 7(1): 83– 94.
  • [40] Duman S, Güvenç U, Yörükeren N. Gravitational search algorithm for economic dispatch with valve-point effects. International Review of Electrical Engineering (I.R.E.E), 2010, 5(6): 2890–2895.
  • [41] Al-Sumait J S, Al-Othman A K, Sykulski J K. Application of pattern search method to power system valve-point economic load dispatch. Electrical Power and Energy Systems, 2007, 29(10): 720–730.
  • [42] Y Labbi,Djilani B,Belkacem M “Artificial bee colony optimization for economic dispatch with valve point effect” Front. Energy (2014) 8: 449. DOI: 10.1007/s11708-0140316-8.
  • [43] Sumit B,Deblina M, Chandan K “Teaching learning based optimization for economic load dispatch problem considering valve point loading effect” Electrical Power and Energy Systems 73 (2015) 456–464 doi.org/10.1016/j.ijepes.2015.05.036.
  • [44] Y Labbi ,Djilani “A Hybrid Big Bang–Big Crunch optimization algorithm for solving the different economic load dispatch problems” Int J Syst Assur Eng Manag 2016 DOI 10.1007/s13198-016-0432-4.
  • [45] Wu Y, Liu G, Guo X, Shi Y, Xie L . A self-adaptive chaos and Kalman filter-based particle swarm optimization for economic dispatch problem. Soft Comput 2017; 21(12):3353-65.
  • [46] Panigrahi B, Pandi VR. Bacterial foraging optimisation: neldermead hybrid algorithm for economic load dispatch. IET Gener Trans Distrib 2008;2:556–65.
  • [47] A.AURASOPON, W. KHAMSEN ‘’An improved local search involving bee colony optimization using lambda iteration combined with a golden section search method to solve an economic dispatch problem’’ PRZEGLĄD ELEKTROTECHNICZNY, R. 95 NR 1/2019.
  • [48] Mohammadian M, Lorestani A, Ardehali MM. Optimization of single and multi-areas economic dispatch problems based on evolutionary particle swarm optimization algorithm. Energy 2018;161 :710-724.
  • [49] Fesanghary M, Ardehali M. A novel meta-heuristic optimization methodology for solving various types of economic dispatch problem. Energy 2009;34:757–66.
  • [50] Labbi Y., Attuos D.B., Environmental/economic power dispatch using a Hybrid Big Bang–Big Crunch optimization algorithm. International Journal of System Assurance Engineering and Management, 5(4):602- 610, 2014.
  • [51] Safari A, Shayeghi H. Iteration particle swarm optimization procedure for economic load dispatch with generator constraints. Expert Syst Appl 2011;38:6043–8.
  • [52] B. Mohammadi-Ivatloo A. Rabiee a , A. Soroudi b , M. Ehsan a “Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems” Electrical Power and Energy Systems 42 (2012) 508–516, doi.org/10.1016/j.ijepes.2012.04.060.
  • [53] Yamina A. G. Hamid B 2017. Resolution of economic dispatch problem of the Algerian network using hybrid met heuristic. Electrotehnică, Electronică, Automatică (EEA) Vol 65(1),pp.9196,ISSN 1582-5175.
  • [54] Yang, X,. Sadat Hosseini S, Gandomi A 2012. Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl Soft Comput 2012;12(3):1180–6.
  • [55] Ciornei, I,. Kyriakides E 2012. A GA-API solution for the economic dispatch of generation in power system operation. Power Syst IEEE Trans 2012;27(1):233-42.
  • [56] Raghav, P,. Kedar, NA 2016. Novel hybrid optimizer for solving Economic Load Dispatch problem.Electrical Power and Energy Systems 78 (2016) 108–126.
  • [57] Arago´n VS, Esquivel SC, Coello Coello CA (2015) An immune algorithm with power redistribution for solving economic dispatch problems. Inf Sci 295:609–632.
  • [58] Pothiya,S,. Ngamroo I, Kongprawechnon W 2008. Application of multiple tabu search algorithm to solve dynamic econo mic dispatch considering generator constraints. Energy Convers Manage 2008; 49:506–16.
  • [59] Mostafa D ,S. Aghay , Ehsan T, Nasrudin .A,S. Kaboli, Ehsan.T, Nasrudin. A“Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options” Energy 2016, 637-649.
  • [60]Benasla, L,. Belmadani, A Rahli, M 2014. Spiral Optimization Algorithm for solving Combined Economic and Emission Dispatch. Electrical Power and Energy Systems 62 (2014) 163–174 doi.org/10.1016/j.ijepes.2014.04.037.
  • [62] Chatterjee, A,. Ghoshal, SP, Mukherjee, V 2012. Solution of combined economic and emission dispatch problems of power systems by an opposition-based harmony search algorithm. Electrical Power Energy Syst 2012;39:9–20.
  • [63] Niknam, T. A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and nonconvex economic dispatch problem. Applied Energy, 2010, 87(1): 327–339.
  • [64] Sayah,S A.Hamouda,A Bekrar 2014. Efficient hybrid optimization approach for emission constrained economic dispatch with nonsmooth cost curves. Electric Power Energy Syst 2014;56:127–39.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f7ac8ce7-0bec-4180-a2d0-89e09053df98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.