Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 57, nr 2 | 83--90
Tytuł artykułu

Influence the heat treatment of two base metal alloys used on dental prosthesis on corrosion resistance

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of the study is to try find the influence of the heat treatment on the corrosion resistance of two base cobalt alloys used on dental prosthesis. Design/methodology/approach: The investigation was choosen two base cobalt alloys: Remanium 2000+ (Dentaurum) and Wirobond LFC (Bego). Corrosion resistance test were carried out at room temperature and use of the Potentiostat IPS AJ PGU system for electrochemical tests. The examination use of water center which simulated artificial saliva environment. The evaluation of pitting corrosion was realized by recording of anodic polarization curves with use the potentiodynamic methods. Structure observation was made after surface preparation by light microscope. Findings: Research cobalt alloys are characterized by a dendritic crystals in structure. For both cobalt alloys increasing the time of age hardening effect on growth of the corrosion resistance, especially to increase the potential for pitting initiation. Research limitations/implications: The research was carried out on samples, not on final elements. Practical implications: The research material is used on dentures, so it must characterize the corrosion resistance. Results of this work make up an information on what heat treatment parameters may be pay attention for two base cobalt alloys: Remanium 2000+ (Dentaurum) and Wirobond LFC (Bego). Originality/value: The paper presents influence the heat treatment of two base metal alloys used on dental prosthesis on corrosion resistance.
Wydawca

Rocznik
Strony
83--90
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Division of Materials Processing Technology and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, lukasz.reimann@polsl.pl
  • Division of Materials Processing Technology and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Materials Processing Technology and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Materials Science, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratyslava, J. Bottu 25, 917 24 Trnava, Slovakia
  • Institute of Materials Science, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratyslava, J. Bottu 25, 917 24 Trnava, Slovakia
Bibliografia
  • [1] J. Marciniak, Biomaterials, Silesian University of Technology Library, Gliwice, 2002 (in Polish).
  • [2] J. Łaskawiec, R. Michalik, Theoretical and applied issues in implants, Silesian University of Technology Library, 2002 (in Polish).
  • [3] J. Baszkiewicz, M. Kamieński, Corrosion of materials, Publishing House of Warsaw University of Technology, Warsaw, 2006 (in Polish).
  • [4] A. Ziębowicz, W. Walke, A. Barucha-Kępka, M. Kiel, Corrosion behaviour of metallic biomaterials used as orthodontic wires, Journal of Achievements in Materials and Manufacturing Engineering 27/2 (2008) 151-154.
  • [5] M. Kiel, A. Krauze, J. Marciniak, Corrosion resistance of metallic implants used in bone surgery, Archives of Materials Science and Engineering 30/2 (2008) 7-80.
  • [6] M. Kaczmarek, Corrosion resistance of NiTi alloy in simulated body fluids, Archives of Materials Science and Engineering 28/5 (2007) 269-272.
  • [7] A.D. Dobrzańska-Danikiewicz, J. Żmudzki, Development trends of mucous-borne dentures in the aspect of elastomers applications, Archives of Materials Science and Engineering 55/1 (2012) 5-13.
  • [8] I. Budak, B. Kosec, M.Sokovic, Application of contemporary engineering techniques and technologies in the field of dental prosthetics, Journal of Achievements in Materials and Manufacturing Engineering 54/2 (2012) 233-241.
  • [9] B. Walkowiak, Biomedical effect of tissue contact with an implant, Engineering of Biomaterials 7 (2004) 200-205 (in Polish).
  • [10] M. Hajduga, B. Kalukin, A. Kalukin, Evaluation of the state dental materials after implantation in the human body, Corrosion Protection 4-5 (2009) 166-169 (in Polish).
  • [11] R. Zuo, Biofilms: strategies for metal corrosion inhibition employing microorganisms, Applied Microbiology and Biotechnology 76 (2007) 1245-1253.
  • [12] H. Bala, Corrosion of materials - theory and practice, WIPMiFS, Częstochowa, 2002 (in Polish).
  • [13] M. Nałęcz, Biocybernetics and Biomedical Engineering 2000, Volume 8: medical imaging, Academic Publishing House EXIT, Warsaw, 2003 (in Polish).
  • [14] L. Klimek, Structure and corrosion resistance of the layers of titanium nitride and carbonitride alloy for dental Wironit, Engineering of Biomaterials 43-44 (2005) 40-43 (in Polish).
  • [15] R. Craig, J. Powers, J. Watalha, Dental Materials, Medical Publisher, Wrocław, 2010 (in Polish).
  • [16] J. Marciniak, M. Karczmarek, A. Ziębowicz, Biomaterials in dentistry, Silesian University of Technology Library, Gliwice, 2008 (in Polish).
  • [17] J. Marciniak, Z. Paszenda, W. Walke, M. Kaczmarek, J. Tyrlik - Held, W. Kajzer, Stents of minimally invasive surgery, Silesian University of Technology Library, Gliwice, 2006 (in Polish).
  • [18] L.A. Dobrzański, Ł. Reimann, C. Krawczyk, Effect of hardening on corrosion resistance and hardness of CoCrMo alloys used in dental engineering, Archives of Materials Science and Engineering 57/1 (2012) 5-12.
  • [19] S. Zangeneh, H.R. Lashgari, M. Saghafi, M. Karshenas, Effect of isothermal aging on the microstructural evolution of Co-Cr-Mo-C alloy, Materials Science and Engineering 527/24-25 (2010) 6494-6500.
  • [20] J.R. Dabrowski, M. Gradzka-Dahlke, The heat treatment of cast cobalt alloys used in dental prostheses, Scientific Papers of Kielce University of Technology, Mechanics 72 (2000) 409-414 (in Polish).
  • [21] C. Montero-Ocampo, R. Juarez, A. Salinas Rodriguez, Effect of fcc-hcp phase transformation produced by isothermal aging on the corrosion resistance of a Co-27Cr-5Mo-0.05C alloy, Metallurgical and Materials Transactions A 33/7 (2002) 2229-2235.
  • [22] S. Zangeneh, H.R. Lashgari, A. Roshani, Microstructure and tribological characteristics of aged Co-28Cr-5Mo-0.3C alloy, Materials and Design 37 (2012) 292-303.
  • [23] Polish Standards PN-EN ISO 10271:2004: Dental metallic materials - Corrosion test methods.
  • [24] L.A. Dobrzański, Ł. Reimann, Influence of Cr and Co on hardness and corrosion resistance CoCrMo alloys used on dentures, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 193-199.
  • [25] L.A. Dobrzański, K. Lukaszkowicz, D. Pakuła, J. Mikuła, Corrosion resistance of multilayer and gradient coatings deposited by PVD and CVD techniques, Archives of Materials Science and Engineering 28/1 (2007) 12-18.
  • [26] Z. Górny, Cast cobalt alloys, Foundry Institute, Cracow, 2008 (in Polish)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f790d1a2-b505-4359-bf23-ed684665231d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.