Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 31, Fasc. 1 | 141--148
Tytuł artykułu

On the factorization of the Haar measure on finite Coxeter groups

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let W be a finite Coxeter group and let λW be the Haar measure on W; i.e., λW(ω) = |W|−1 for every ω ∈ W: We prove that there exist a symmetric set T ̸= W of generators of W consisting of elements of order not greater than 2 and a finite set of probability measures {μ1..., μk} with their supports in T such that their convolution product μ1 ∗ ...∗ μk = λW:
Wydawca

Rocznik
Strony
141--148
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Institute of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland, urban@math.uni.wroc.pl
Bibliografia
  • [1] N. Bourbaki, Groupes et alg`ebres de Lie, Ch. 5, 6, 7, Hermann, 1968.
  • [2] CHEVIE: http://www.math.rwth-aachen.de/˜CHEVIE
  • [3] P. Diaconis, Application of non-commutative Fourier analysis to probability problems, Lecture Notes in Math. Vol. 1362, Springer, 1982, pp. 51-100.
  • [4] P. Diaconis and M. Shahshahani, On square roots of the uniform distribution on compact groups, Proc. Amer. Math. Soc. 98 (2) (1986), pp. 341-348.
  • [5] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, CHEVIE - a system for computing and processing generic character tables. Computational methods in Lie theory (Essen, 1994), Appl. Algebra Engrg. Comm. Comput. 7 (3) (1996), pp. 175-210.
  • [6] M. Geck and G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Math. Soc. Monogr. (2000).
  • [7] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge-New York 1990.
  • [8] D. E. Knuth, The Art of Computer Programming, Vol. 2. Seminumerical Algorithms, second edition, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass., 1981.
  • [9] P. Lévy, Premiers éléments de l’arithmétique des substitutions aléatoires, C. R. Acad. Sci. Paris 237 (1953), pp. 1488-1489.
  • [10] M. Schönert et al., GAP - Groups, Algorithms, and Programming - version 3 release 4 patchlevel 4, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1997; available at http://www.gap-system.org/gap.html.
  • [11] V. I. Sherstnev, A random variable uniformly distributed on a finite abelian group as a sum of independent summands (in Russian), Teor. Veroyatnost. i Primenen. 43 (2) (1998), pp. 397-403. Translation in: Theory Probab. Appl. 43 (2) (1999), pp. 329-335.
  • [12] V. I. Sherstnev, Decompositions of a uniform distribution on a finite group (in Russian), Teor. Veroyatnost. i Primenen. 47 (3) (2002), pp. 594-599. Translation in: Theory Probab. Appl. 47 (3) (2003), pp. 550-555.
  • [13] G. Turnwald, Roots of Haar measure and topological Hamiltonian groups, in: Probability Measures on Groups, IX (Oberwolfach, 1988), Lecture Notes in Math. Vol. 1379, Springer, 1989, pp. 364-375.
  • [14] R. Urban, Some remarks on the random walk on finite groups, Colloq. Math. 74 (2) (1997), pp. 287-298.
  • [15] R. Urban, Note on the factorization of the Haar measure on finite Coxeter groups, Probab. Math. Statist. 24 (1) (2004), pp. 173-180.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f73ada62-568f-40dc-8de5-7a9b19a1a7c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.