Czasopismo
2022
|
Vol. 29, nr 4
|
525--535
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents selected aspects of calculations and modelling of variograms from measurements of soil surface magnetic susceptibility for rapid screening of surface soil contamination with Technogenic Magnetic Particles (TMP). In particular, the methodology of variogram analysis in the case of multiple magnetometric measurements in one measurement location with the use of the MS2D Bartington sensor was discussed. A new approach to analysing such measurements was proposed that allows determining and using the nugget effect from standard, already existing measurements. This is of key importance for the quality of spatial analyses, and thus the screening results obtained by means of field magnetometry. In the paper, it was shown, step by step, that averaging the measurements performed at one measurement point during the calculation of the empirical variograms does not result in the loss of information on spatial variability in the microscale. As it was calculated non-averaged measurements were characterised by the nugget-to-sill ratio of about 96 % which was much higher than in the case of averaged measurements (close to 0 %). A range of correlation was similar in both cases and was equal to about 300 m - 400 m. The local variogram revealed a range of correlation of about 80 cm. As a result, the screening results are more reliable than is the case with the traditional procedure. An additional advantage of the work was the performance of all calculations in free R software.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
525--535
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, ul. Nowowiejska 20, 00-661 Warszawa, Poland, jaroslaw.zawadzki@pw.edu.pl
autor
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, ul. Nowowiejska 20, 00-661 Warszawa, Poland
Bibliografia
- [1] Dankoub Z, Ayoubi S, Khademi H, Gao Lu SG. Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan region, Central Iran. Pedosphere. 2012;22(1):33-47. DOI: 10.1016/S1002-0160(11)60189-6.
- [2] Zolfaghari Z, Ayoubi S, Mosaddeghi MR. Spatial variability of some soil shrinkage indices in hilly calcareous region of western Iran. Soil Tillage Res. 2015;150:180-91. DOI: 10.1016/j.still.2015.01.016.
- [3] Webster R, Oliver M. Geostatistics for Environmental Scientists. Chichiester: Wiley; 2007. ISBN: 9780470028582.
- [4] Zawadzki J. Metody geostatystyczne dla kierunków przyrodniczych i technicznych (Geostatistical methods for natural and technical directions). Warszawa: Ofic Wyd Politechniki Warszawskiej; 2011. ISBN: 9788372079534.
- [5] Cressie N, Hawkins DM. Robust estimation of the variogram: I. J Int Assoc Mathematical Geol. 1980; 12:115-25. DOI: 10.1007/BF01035243.
- [6] Zawadzki J, Fabijańczyk P. Use of variograms for field magnetometry analysis in Upper Silesia Industrial Region. Stud Geophys Geod. 2007;51:535-50. DOI: 10.1007/s11200-007-0031-6.
- [7] McBratney A, Odeh I, Bishop T, Dunbar M, Shatar T. An overview of pedometric techniques for use in soil survey. Geoderma. 2000; 97:293-327. DOI: 10.1016/S0016-7061(00)00043-4.
- [8] Hengl T. A practical guide to geostatistical mapping of environmental variables, EUR 22904 EN. Scientific and Technical Research series: Office for Official Publications of the European Communities. 2007. ISBN: 9789279069048.
- [9] Woodcock CE, Strahler AH, Jupp DLB. The use of semivariograms in remote sensing: I. Scene models and simulated images. Remote Sensing of Environment. 1988;25:323-48. DOI: 10.1016/0034-4257(88)90108-3.
- [10] Woodcock CE, Strahler AH, Jupp DLB. The use of semivariograms in remote sensing: II. Real digital images. Remote Sensing of Environment. 1988;25:349-79. DOI: 10.1016/0034-4257(88)90109-5.
- [11] Goovaerts P. Ordinary cokriging revisited. Math Geol. 1998;30(1):22-42. DOI: 10.1023/A:1021757104135.
- [12] McBratney AB, and Webster R. Choosing function for semivariograms of soil properties and fitting them to sampling estimates. J Soil Sci. 1986;37,617-39. DOI: 10.1111/j.1365-2389.1986.tb00392.x.
- [13] Scull P, Franklin J, Chadwick OA, McArthur D. Predictive soil mapping: a review. Progress Physical Geography. 2003;27:171-97. DOI: 10.1191/0309133303pp366ra.
- [14] Hengl T, Heuvelink G, Stein AAA. Generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma. 2004;122:75-93. DOI: 10.1016/j.geoderma.2003.08.018.
- [15] Journel AG. Nonparametric estimation of spatial distributions. J Int Assoc Math Geol. 1983;15(3):445-68. DOI: 10.1007/bf01031292.
- [16] Fabijańczyk P, Zawadzki J, Magiera T. Magnetometric assessment of soil contamination in problematic area using empirical Bayesian and indicator kriging: A case study in Upper Silesia, Poland. Geoderma. 2017;308:69-77. DOI: 10.1016/j.geoderma.2017.08.029.
- [17] Isaaks EH. Srivastava RM. Appl Geostatistics. New York: Oxford University; 1998. ISBN: 9780196050134.
- [18] Oliver MA, Webster R, A tutorial guide to geostatistics: computing and modelling variograms and kriging. Catena. 2014;113:56-69. DOI: 10.1016/j.catena.2013.09.006.
- [19] Fürst Ch, Lorz C, Makeschin F. Testing a soil magnetometry technique in a highly polluted industrial region in north-eastern Germany. Water Air Soil Pollut. 2009;202(1-4):33-43. DOI: 10.1007/s11270-008-9956-9.
- [20] Fürst C, Lorz C, Zirlewagen D. Testing the indicative value of magnetic susceptibility measurements for concluding on site potentials and risks provoked by fly ash deposition. Environ Manage. 2010;46:894-907. DOI: 10.1007/s00267-010-9572-5.
- [21] Fürst C, Zirlewage D, Lorz, C. Regionalization of magnetic susceptibility measurements based on a multiple regression approach. Water Air Soil Pollut. 2010;208(1-4):129-51. DOI: 10.1007/s11270-009-0154-1.
- [22] Magiera T, Strzyszcz Z, Kapička A, Petrovsky E. Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma. 2006;130:299-311. DOI: 10.1016/j.geoderma.2005.02.002.
- [23] Karimi R, Ayoubi S, Jalalian A, Sheikh-Hosseini AR, Afyuni M. Relationships between magnetic susceptibility and heavy metals in urban topsoils in the arid region of Isfahan, central Iran. J Appl Geophysics. 2011;74(1):1-7. DOI: 10.1016/j.jappgeo.2011.02.009.
- [24] Ayoubi S, Jabbari M, Khademi H. Multiple linear modeling between soil properties, magnetic susceptibility and heavy metals in various land uses. Modeling Earth Systems Environ. 2018;4(2):579-89. DOI: 10.1007/s40808-018-0442-0.
- [25] Vodyanitskii YN, Shoba SA. Magnetic susceptibility as an indicator of heavy metal contamination of urban soils. Moscow Univ Soil Sci Bull. 2015;70(1):10-6. DOI: 10.3103/S014768741501007X.
- [26] Łukasik A, Magiera T, Lasota J, Błońska E. Background value of magnetic susceptibility in forest topsoil: Assessment on the basis of studies conducted in forest preserves of Poland. Geoderma. 2016;264:140-9. DOI: 10.1016/j.geoderma.2015.10.009.
- [27] Łukasik A, Szuszkiewicz M, Magiera T. Impact of artifacts on topsoil magnetic susceptibility enhancement in urban parks of the Upper Silesian conurbation datasets. Soils Sediments. 2015;15:1836-46. DOI: 10.1007/s11368-014-0966-5.
- [28] Spiteri C, Kalinski V, Rosler W, Hoffman V, Appel E. Magnetic screening of pollution hotspots in the Lausitz Area, Eastern Germany: Correlation analysis between magnetic proxies and heavy metal concentration in soil. Environ Geol. 2005;49:1-9. DOI: 10.1007/s00254-005-1271-9.
- [29] Dearing JA. Environmental Magnetic Susceptibility: Using the Bartington MS2 System. Bartington Instruments. UK. 1999. ISBN: 0952340909.
- [30] Zawadzki J, Magiera T, Fabijańczyk P. Geostatistical evaluation of magnetic indicators of forest soil contamination by heavy metals. Stud Geophys Geod. 2009;53:133-49. DOI: 10.1007/s11200-009-0008-8.
- [31] R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria; 2020. Available from: https://www.R-project.org/.
- [32] Pebesma EJ. Multivariable geostatistics in S: the gstat package. Computers Geosci. 2004;30:683-91. DOI: 10.1016/j.cageo.2004.03.012.
- [33] Zawadzki J, Fabijańczyk P, Magiera T, Rachwał M. Micro-scale spatial correlation of magnetic susceptibility in soil profile in forest located in an industrial area. Geoderma. 2015;249:61-8. DOI: 10.1016/j.geoderma.2015.02.008.
- [34] Liu XM, Xu JM, Zhang MK, Huang JH, Shi JC, Yu XF. Application of geostatistics and GIS technique to characterize spatial variabilities of bioavailable micronutrient in paddy soils. Environ Geol. 2004;46:189-94. DOI: 10.1007/s00254-004-1025-0.
- [35] Badawy W , Frontasyeva MV, Ibrahim M. Vertical distribution of major and trace elements in a soil profile from the Nile Delta, Egypt. Ecol. Chem Eng S. 2020;27(2):281-94. DOI: 10.2478/eces-2020-0018.
- [36] Usowicz B, Lipiec J Spatial variability of saturated hydraulic conductivity and its links with other soil properties at the regional scale. Sci Rep. 2021;11:8293. DOI: 10.1038/s41598-021-86862-3.
- [37] Western AW, Blöschl G, Grayson RB. How well do indicator variograms capture the spatial connectivity of soil moisture? Hydrolog Processes. 1998;12(12):1851-68. DOI: 10.1002/(SICI)1099-1085(19981015).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f7100867-6f90-49b3-8acf-ad9b48d04034