Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 26, nr 3 | 56--62
Tytuł artykułu

Colorimetric detection of platinum (IV) ions based on triangular silver nanoprism particles in aqueous environmental sample

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Silver nitrate (AgNO3), trisodium citrate dihydrate (C6H5Na3O7 · 2H2O), sodium borohydride (NaBH4), and L-ascorbic acid (C6H8O6) were combined in distilled water to create a triangular silver nanoprism particle (AgNPRP) solution. UV-visible (UV-vis) spectroscopy at wavelengths of 350–460 nm and 580–700 nm was observed, and as a result of them, the successful formation of the triangular AgNPRPs was confirmed. The prepared silver nanoprism particles were characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy(SEM), and transmission electron microscopy(TEM) and employed for the colorimetric detection of platinum(IV) ions in an aqueous solution containing Pt4+ ions. The color of the aqueous silver nanoprism particle solution, containing Pt4+ ions, changed from blue to light brown before turning colorless. Using UV-vis spectrophotometry, the detection limit of the Pt4+ ion concentration was determined to be 6.23 μM in an aqueous solution of silver nanoprism particles. The proposed method was applied for detecting Pt4+ ions in tap water samples.
Wydawca

Rocznik
Strony
56--62
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wz.
Twórcy
  • Department of Animal Resources Science, Chemistry Major, Sahmyook University, 815 Hwarangro, Nowongu, Seoul 01795, Republic of Korea
  • Department of Convergence Science, Graduate School, Sahmyook University, 815 Hwarangro, Nowongu, Seoul 01795, Republic of Korea
autor
  • Department of Convergence Science, Graduate School, Sahmyook University, 815 Hwarangro, Nowongu, Seoul 01795, Republic of Korea, kowb@syu.ac.kr
  • Department of Chemistry, Sahmyook University, 815 Hwarangro, Nowongu, Seoul 01795, Republic of Korea
Bibliografia
  • 1. Kim, H.N., Ren, W.X., Kim, J.S. & Yoon, J. (2012). Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 41, 3210e3244. DOI: 10.1039/C1CS15245A.
  • 2. Li, J., Wang, X.X., Zhao, G.X., Chen, C.L., Chai, Z.F., Alsaedi, A., Hayat, T. & Wang, X.K. (2018). Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 47, 2322e2356. DOI: 10.1039/C7CS00543A.
  • 3. Amin, N., Siddiqi, H.M., Lin, Y.K., Hussain, Z. & Majeed, N. (2020). Bovine serum albumin protein-based liquid crystal biosensors for optical detection of toxic heavy metals in water. Sensors, 20, 298. DOI: 10.3390/s20010298.
  • 4. Lin, L., Yao, S., Gao, R., Liang, X., Yu, Q., Deng, Y., Liu, J., Peng, M., Jiang, Z., Li, S., Li, Y-W., Wen, X-D., Zhou, W. & Ma, D. (2019). A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 14, 354–361. DOI: 10.1038/s41565-019-0366-5.
  • 5. Feng, W., Zengji, Z., Testoff, T.T., Wang, T., Yan, X., Li, X., Liu, D., Lichang Wang, L. & Zhou, X. (2021). Photoinduced charge-separated molecular probe for ultrasensitive spectrum analysis and rapid colorimetric detection of platinum ions. Anal. Chim. Acta, 1153, DOI: 10.1016/j.aca.2021.338278.
  • 6. Sang, F., Liu, J., Zhang, X. & Pan, J. (2018). An aptamer-based colorimetric Pt(II) assay based on the use of gold nanoparticles and a cationic polymer. Microchim. Acta, 185, 267. DOI: 10.1007/s00604-018-2794-6.
  • 7. Rudolph, E., Hann, S., Stingeder, G. & Reiter, C. (2005). Ultra-trace analysis of platinum in human tissue samples. Anal. Bioanal. Chem. 382, 1500–1506. DOI: 10.1007/s00216-005-33706.
  • 8. Chen, L., Fu, X., Lu, W. & Chen, L. (2013). Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms. ACS Appl. Mater. Interfaces, 5, 284–290. DOI: 10.1021/am3020857.
  • 9. Brouwers, E.E., Tibben, M.M., Joerger, M., Van, T.O., Rosing, H., Schellens, J.H.M. & Beijnen, J.H. (2005). Determination of oxaliplatin in human plasma and plasma ultrafiltrate by graphite-furnace atomic-absorption spectrometry. Anal. Bio-anal. Chem. 382, 1484–1490. DOI: 10.1007/s00216-005-3302-5.
  • 10. Huang, Z., Timerbaev, A.R., Keppler, B.K. & Hirokawa, T. (2006). Determination of cisplatin and its hydrolytic metabolite in human serum by capillary electrophoresis techniques. J. Chromatogr. A. 1106, 75–79. DOI: 10.1016/j.chroma.2005.09.042.
  • 11. Yang, H., Cui, H., Wang, L., Yan, L., Qian, Y., Zheng, X.E, Wei, W. & Zhao, J. (2014). A label-free G-quadruplex DNA-based fluorescence method for highly sensitive, direct detection of cisplatin. Sens. Actuators B Chem. 202, 714–720. DOI: 10.1016/j.snb.2014.05.027.
  • 12. Martinčič, A., Cemazar, M., Sersa, G., Kovač, V., Milačič, R. & Ščančar, J. (2013). A novel method for speciation of Pt in human serum incubated with cisplatin, oxaliplatin and carboplatin by conjoint liquid chromatography on monolithic disks with UV and ICP-MS detection. Talanta, 213, 141–148. DOI: 10.1016/j.talanta.2013.05.016.
  • 13. Yaroshenko, D.V., Grigoriev, A.V., Sidorova, A.A. & Kartsova, L.A. (2013). Determination of cisplatin in blood plasma by liquid chromatography with mass spectrometry detection. J. Anal. Chem. 68, 156–160. DOI: 10.1134/S1061934813020160.
  • 14. Pershagen, E., Nordholm, J. & Borbas, K.E. (2012). Luminescent lanthanide complexes with analyte-triggered antenna formation. J. Am. Chem. Soc. 134, 9832e9835. DOI: 10.1021/ja3004045.
  • 15. Dhanushkodi, M., Kumar, G.G.V., Balachandar, B.K., Sarveswari, S., Gandhi, S. & Rajesh, J. (2020). A simple pyrazine based ratiometric fluorescent sensor for Ni2þ ion detection. Dyes Pigm. 173, 107897. DOI: 10.1016/j.dyepig.2019.107897.
  • 16. Prosposito, P., Mochi, F., Ciotta, E., Casalboni, M., De Matteis, F., Venditti, I., Fontana, L., Testa, G. & Fratoddi, I. (2016). Hydrophilic silver nanoparticles with tunable optical properties: Application for the detection of heavy metals in water. Beilstein J. Nanotechnol. 7(1), 1654–1661. DOI: 10.3762/bjnano.7.157.
  • 17. Niu, S., Lv, Z., Liu, J., Bai, W., Yang, S. & Chen, A. (2014). Colorimetric aptasensor using unmodified gold nano-particles for homogeneous multiplex detection. PLoS One. 9(10): e109263. DOI: 10.1371/journal.pone.0109263.
  • 18. Sang, F., Li, X., Zhang, Z., Liu, J. & Chen, G. (2017). Recyclable colorimetric sensor of Cr3+ and Pb2+ ions simultaneously using a zwitterionic amino acid modified gold nanoparticles. Spectrochim. Acta A, 193, 109–116. DOI: 10.1016/j. saa.2017.11.048.
  • 19. Zhang, Y., Li, R., Xue, Q., Li, H. & Liu, J. (2015). Colorimetric determination of copper(II) using a polyamine-functionalized gold nanoparticle probe. Microchim. Acta. 182, 1677–1683. DOI: 10.1007/s00604-015-1498-4.
  • 20. He, Y., Cheng, F., Pang, D.W. & Tang, H.W. (2016). Colorimetric and visual determination of DNase I activity using gold nanoparticles as an indicator. Microchim. Acta. 184, 1–6. DOI: 10.1007/s00604-016-2003-4.
  • 21. Du, G., Zhang, D., Xia, B., Xu, L., Wu, S., Zhan, S., Ni, X., Zhou, X. & Wang, L. (2016). A label-free colorimetric progesterone aptasensor based on the aggregation of gold nanoparticles. Microchim. Acta. 183, 2251–2258. DOI: 10.1007/s00604-016-1861-0.
  • 22. Ban, D.K., Pratihar, S.K. & Paul, S. (2015). Controlled modification of starch in the synthesis of gold nanoparticles with tunable optical properties and their application in heavy metal sensing. RSC Adv. 5, 81554–81564. DOI: 10.1039/C5RA16473G.
  • 23. Boudesocque, S., Mohamadou, A., Conreux, A., Marin, B. & Dupont, L. (2019). The recovery and selective extraction of gold and platinum by novel ionic liquids. Sep. Purif. Technol. 210, 824–834. DOI: 10.1016/j.seppur.2018.09.002.
  • 24. Mosai, A.K., Chimuka, L., Cukrowska, E.M., Kotzé, I.A. & Tutu, H. (2021). Batch and flow-through column adsorption study: recovery of Pt4+ from aqueous solutions by 3-aminopropyl (diethoxy) methylsilane functionalised zeolite (APDEMSFZ). Environ. Dev. Sustain. 23, 7041–7062. DOI: 10.1007/s10668-020-00903-x.
  • 25. Park, H.N., Choi, H.A. & Won, S.W. (2018). Fibrous polyethylenimine/polyvinyl chloride crosslinked adsorbent for the recovery of Pt (IV) from acidic solution: Adsorption, desorption and reuse performances. J. Clean. Prod.176, 360–369. DOI: 10.1016/j.jclepro.2017.12.160.
  • 26. Bilgin, F. & Imamoglu, M. (2024). Effect of spacer length between N atoms of linear alkyl triamines on adsorption of anionic platinum (IV) ions. Desalin. Water Treat. 317, 100229. DOI: 10.1016/j.dwt.2024.100229.
  • 27. Roh, J., Park, E.J., Park, K., Yi, J. & Kim, Y. (2010). Fast preparation of citrate-stabilized silver nanoplates and its nanotoxicity. Korean J. Chem. Eng. 27, 1897–1900. DOI: 10.1007/s11814-010-0299-z.
  • 28.Yang, J., Zheng, H., Han, S., Jiang, Z. & Chen, X. (2015). The synthesis of nano-silver/sodium alginate composites and their antibacterial properties. RSC Adv. 5, 2378–2382. DOI: 10.1039/C4RA12836B.
  • 29. Li, Y., Ye, Y., Fan, Y., Zhou, J., Jia, L., Tang, B. & Wang, X. (2017) Silver Nanoprism-Loaded Eggshell Membrane: A Facile Platform for In Situ SERS Monitoring of Catalytic Reactions. Crystals. 7, 45. DOI: 10.3390/cryst7020045.
  • 30. Liang, M., Su, R., Huang, R., Qi, W., Yu, Y., Wang, L. & He, Z. (2014). Facile in situ synthesis of silver nanoparticles on procyanidin-grafted eggshell membrane and their catalytic properties. ACS Appl. Mater. Interfaces, 6(7), 4638–4649. DOI: 10.1021/am500665p.
  • 31. Desai, M.P., Patil, R.V. & Pawar K.D. (2020). Selective and sensitive colorimetric detection of platinum using Pseudomonas stutzeri mediated optimally synthesized antibacterial silver nanoparticles. Biotechnol. Rep. 25, e00404. DOI: 10.1016/j.btre.2019.e00404.
  • 32. Ardianrama, A.D., Pradyasti, A., Woo, H.C. & Kim, M.H. (2020). Colorimetric sensing of barium ion in water based on polyelectrolyte-induced chemical etching of silver nanoprisms. Dyes Pigm. 181, 108578. DOI: 10.1016/j.dyepig.2020.108578.
  • 33. Pu, Z.F.,Wu, B.C., Tan, Y.H., Wen, Q.L., Ling, J., & Cao Q. E. (2021). Selective Aggregation of Silver Nanoprisms Induced by Monohydrogen Phosphate and its Application for Colorimetric Detection of Chromium (III) Ions. J. Anal. Test. 5, 225–234. DOI: 10.1007/s41664-021-00183-y.
  • 34. Chen, N., Zhang, Y., Liu, H., Ruan, H., Dong, C., Shen, Z. & Wu, A. (2016). A supersensitive probe for rapid colori-metric detection of nickel ion based on a sensing mechanism of anti-etching. ACS Sustain. Chem. Eng. 4, 6509–6516. DOI: 10.1021/acssuschemeng.6b01326.
  • 35. Chen, N., Zhang, Y., Liu, H., Wu, X., Li, Y., Miao, L., Shen, Z. & Wu, A. (2016). High-performance colorimetric detection of Hg2+ based on triangular silver nanoprisms. ACS Sens., 1, 521–527. DOI: 10.1021/acssensors.6b00001.
  • 36. Chen, N., Zhang, Y., Liu, H., Wu, X., Li, Y., Miao, L., Shen, Z. & Wu, A. (2016). High-prformance colorimetric detection of Hg2+ based on triangular silver nanoprisms. ACS Sens., 2016, 1:521–527. DOI: 10.1021/acssensors.6b00001.
  • 37. Hastuti, F.W. & Kim, M.H. (2024). Silver nanoprism-mediated colourimetric sensing probe for efficient detection of Pd (II) and Pt (II) ions in water and reuse of formed bimetallic nanoprisms. Spectrochim. Acta Part A: Molec. Biomolec. Spectros. 124234. 10.1016/j.saa.2024.124234.
  • 38. Firdaus, M.L., Fitriani, I., Wyantuti, S., Hartati, Y.W., Khaydarov, R., Mcalister, J.A., Obata, H. & Gamo, T. (2017). Colorimetric detection of mercury(II) ion in aqueous solution using silver nanoparicles. Anal. Sci. 33, 831–837. DOI: 10.2116/analsci.33.831.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f67caa44-bc4d-45e1-b270-413e2898b7d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.