Warianty tytułu
Języki publikacji
Abstrakty
The article presents new propulsion concepts and related new energy sources of modern means of transportation. One of them is hydrogen fuel cells, widely regarded as one of the most promising and alternative solutions due mainly to their ecological nature. Also presented, the biggest problem associated with the development of fuel cells which is hydrogen. A huge energy input is used to produce it. In addition, the storage of hydrogen is highly problematic. With the introduction of increasingly stringent changes regarding toxic emissions into the atmosphere and the move toward emission-free transportation, the article examines the possibilities of converting a ship's reciprocating internal combustion engine propulsion system into an environmentally friendly one. In the rest of the article, legal aspects affecting the reduction of the environmental impact of exhaust emissions in the maritime industry are presented. Examples of fuel cell applications in current means of transportation are also discussed. In the main part of the article, the ship to be converted is presented, along with the planned voyage route. The main engine was converted to alternative electric motors, and a reduction gearbox in the main propulsion system was also selected. The power requirements for converting conventional engines to electric motors and the capacity of the hydrogen storage tanks were then determined. An inverter was selected to convert the generated direct current to alternating current and batteries to store the generated electricity. The final part of the article will analyze the feasibility of converting the propulsion of a Panamax-type bulk carrier with a piston internal combustion engine into an environmentally friendly propulsion system using a hydrogen fuel cell. The analysis will be carried out in terms of cost-effectiveness and technical feasibility. The article ended with conclusions
Słowa kluczowe
Rocznik
Tom
Strony
385--399
Opis fizyczny
Bibliogr. 45 poz., fig., tab.
Twórcy
autor
- Faculty of Marine Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland, r.krakowski@wm.umg.edu.pl
Bibliografia
- 1. Vlasenko L., Niyazbekova Sh., Khalilova M., Andrianova L., Annenskaya N., Brovkina N., Guseva I., Abalakina T., Matrosov S., Abdusattarova Sh. Development of maritime transport: features and financial component in market conditions. Transportation Research Procedia 2022, 63, 1410–1419. https://doi.org/10.1016/j.trpro.2022.06.152
- 2. Wilmsmeier G., Hoffmann J. Sanchez R.J., The impact of port characteristics on international maritime transport costs. Research in Transportation Economics 2006, 16, 117–140.https://doi.org/10.1016/ S0739-8859(06)16006-0
- 3. Chen S., Wang X., Zheng S., Chen Y. Exploring drivers shaping the choice of alternative-fueled new vessels. J. Mar. Sci. Eng. 2023, 11, 1896. https://doi. org/10.3390/jmse11101896
- 4. Balcombe, P., Brierley, J., Lewis, C., Skatvedt, L., Speirs, J., Hawkes, A., Staffell, I. How to decarbonise international shipping: Options for fuels, Technologies and Policies. Energy Convers. Manag. 2019, 182, 72–88.https://doi.org/10.1016/j. enconman.2018.12.080
- 5. Moshiul A.M., Mohammad R., Hira F.A., Maarop N. Alternative marine fuel research advances and future trends: A bibliometric knowledge mapping approach. Sustainability 2022, 14, 4947. https://doi. org/10.3390/su14094947
- 6. Reusser C.A., Young H.A., Pérez Osses J.R., Perez M.A., Simmonds O.J. Power electronics and drives: Applications to modern ship propulsion systems. IEEE Industrial Electronics Maga-zine 2020, 14, 106–122. https://doi.org/10.1109/ MIE.2020.3002493
- 7. Gitelman L.D., Kozhevnikov M.V. New approaches to the concept of energy transition in the times of energy crisis. Sustainability 2023, 15, 5167. https:// doi.org/10.3390/su15065167
- 8. Kyriakopoulos G.L., Streimikiene D., Baležentis T. Addressing challenges of low-carbon Energy transition. Energies 2022, 15, 5718. https://doi. org/10.3390/en15155718
- 9. Lixin F., Zhengkai T., Siew H. Ch. Recen development of hydrogen and fuel cell technologies: A review. Energy Reports 2021, 7, 8421–8446. https://doi.org/10.1016/j.egyr.2021.08.003
- 10. Hassan Q., Azzawi I.D.J., Sameen A.Z., Salman H.M. Hydrogen fuel cell vehicles: Opportunities and challenges. Sustainability 2023, 15, 11501. https://doi.org/10.3390/su151511501
- 11. Duong P.A, Ryu B.R., Kyu S.S, Jeon H., Kang H. Performance analysis of a fuel cells integrated system utilizing Liquified Natural Gas as fuel for a green shipping target. International Journal of Naval Ar- chitecture and Ocean Engineering 2023, 15, 100543. https://doi.org/10.1016/j.ijnaoe.2023.100543
- 12. Ke Y., Yuan W., Liu Q., Zhou F., Guo W., Liu Z., Lin Z., Li X., Li J., Zhang Sh., Tang Y., Tang Z., Chen Y., Zhao B. An overview of noncarbon support materials for membrane electrode assemblies in direct methanol fuel cells: Fundamental and applications. Materials & Design 2023, 233, 112261. https://doi. org/10.1016/j.matdes.2023.112261
- 13. Yang M., Hunger R., Berrettoni S., Sprecher B., Wang B., A review of hydrogen storage and transport technologies. Clean Energy 2023, 7(1), 190– 216, https://doi.org/10.1093/ce/zkad021.02
- 14. Zhang W., Wang J., Lin W., Li G., Hu Z., Zhang M., Huang Z. Effect of hydrogen enrichment on flame broadening of turbulent premixed flames in thin reaction regime. Int. J. Hydrogen Energy 2021, 46, 1210–1218. https://doi.org/10.1016/j. ijhydene.2020.09.159
- 15. Jurczyk M. Przegląd wybranych metod wytwarzania wodoru. Współczesne problemy energetyki 2017, 4, 145–152.
- 16. Transportenvironment. https://www.transporten- environment.org/challenges/ships/greenhouse-gases/ (Accessed: 15.04.2024).
- 17. Consilium.europa. https://www.consilium.europa. eu/pl/policies/clean-and-sustainable-mobility/ (Accessed: 15.04.2024).
- 18. Marine-offshore https://marine-offshore.bureauveritas.com/sustainability/fit-for-55/fueleu-maritime (Accessed: 15.04.2024).
- 19. Green-transition https://www.consilium.europa.eu/ pl/policies/green-deal/fit-for-55-the-eu-plan-for-a- green-transition/ (Accessed: 15.04.2024)
- 20. Emission-control-areas https://www.noaa.gov/gc- international-section/area-based-management-tools- emission-control-areas (Accessed: 15.04.2024).
- 21. Dash S.K., Chakraborty S., Elangovan D.A. Brief review of hydrogen production methods and their challenges. Energies 2023, 16, 1141. https://doi. org/10.3390/en16031141
- 22. Kaiwen L., Bin Y., Tao Z. Economic analysis of hydrogen production from steam reforming process: A literature review. Energy Sources B Energy Econ. Plann 2018, 13, 109–115. https://doi.org/10.1080/1 5567249.2017.1387619
- 23. https://akademiabezpieczenstwa.com/trzy-kolory- wodor,429,pl (Accessed: 15.04.2024).
- 24. https://wszystkoconajwazniejsze.pl/pepites/nie- bieski-wodor/ (Accessed: 15.04.2024).
- 25. Siemens-energy https://press.siemens-energy. com/global/en/feature/fuel-cell-projects-are- wave-future-decarbonizing-maritime-sector (Accessed: 15.04.2024).
- 26. Wartsila double gear https://www.wartsila.com/ma- rine/products/propulsors-and-gears/gears/wartsila- double-gear (Accessed: 15.04.2024).
- 27. Hydrogen-powered-locomotive https://raportcsr.pl/ polskie-lokomotywy-z-napedem-wodorowym/(Accessed: 15.04.2024).
- 28. Hydrogen locomotive https://www.trains.com/trn/ news-reviews/news-wire/wabtec-hydrogen-is-the-lo- comotive-fuel-of-the-future/ (Accessed: 15.04.2024).
- 29. Markowski J., Pielecha I., Nowacki M., Olejniczak D. The potential of fuel cells as a source of propulsion for means of transport. Journal of Polish CI- MEEAC 2017, 12(1), 65–76. https://bibliotekanau- ki.pl/articles/2073577 (Accessed: 15.04.2024).
- 30. Vessel. https://www.balticshipping.com/vessel/ imo/9452593 (Accessed:15.04.2024).
- 31. Sailing distance. https://www.bednblue.pl/sailing- distance-calculator?cruisingSpeed=10 (Accessed: 15.04.2024).
- 32. Michalski R. Siłownie okrętowe. Obliczenia wstępne oraz zasady doboru mechanizmów i urządzeń pomocniczych instalacji siłowni motorowych. Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin 1997.
- 33. https://shipandbunker.com/prices/emea/nwe/nl- rtm-rotterdam (Accessed: 15.04.2024).
- 34. h t t p s : / / w w w . g o s p o d a r k a m o r s k a . p l / kosztowna-emisja-co2-dla-zbiornikowcow-i-konten- erowcow-84-mld-eur-do-2026-r-wydadza-operatorzy- flot-handlowych-72213(Accessed: 15.04.2024).
- 35. https://connectedfleet.michelin.com/blog/calculate- co2-emissions/](Accessed: 15.04.2024).
- 36. Engine. https://www.man-es.com/marine/products/ planning-tools-and-downloads/ceas-engine-calcu- lations (Accessed: 15.04.2024).
- 37. Electric motors. https://vyboelectric.com/pl/ electric-motors-vybo(Accessed:15.04.2024).
- 38. Fuel cell. https://www.ballard.com/fuel-cell-so- lutions/fuel-cell-power-products/marine-mod- ules (Accessed: 15.04.2024).
- 39. Fuel cell module. https://www.h2storage.nl/home/ (Accessed: 15.04.2024).
- 40. https://www.statista.com/statistics/1179498/us- hydrogen-production-costs-forecast/ (Accessed: 15.04.2024).
- 41. https://www.tuv.com/landingpage/pl/hydrogen- technology/main-navigation/production/] (Accessed: 15.04.2024).
- 42. Hren R., Vujanović A., Van Fan Y., Klemeš J.J., Krajnc D., Čuček L. Hydrogen production, storage and transport for renewable energy and chemicals: Anenvironmental footprint assessment,Renewable and Sustainable Energy Reviews, 2023, 173, 113113, https://doi.org/10.1016/j.rser.2022.113113
- 43. Inverter power selection. https://www.liderbudow- lany.pl/technologie-poradniki/instalacje/energia- ekologiczna/dobor-mocy-falownika-do-instalacji- fotowoltaicznej/ (Accessed: 15.04.2024).
- 44. Prices-for-dry-bulk https://www.hellenicshipping- news.com/prices-for-dry-bulk-carriers-remain-high- amid-increased-demand/ (Accessed: 15.04.2024).
- 45. https://www.pit.pl/srodki-trwale/tabor-morski- srodki-trwale-922679 (Accessed: 15.04.2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f6625450-9fd1-431b-95c0-ca1aaedc998c