Czasopismo
2016
|
Vol. 20, nr 3
|
233--247
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this part we present the algebraic calculus computations related to the Hamiltonian equations of motion for the Jupiter – Saturn subsystem. Also we give a comment on the methods of the solution for the system of linear and nonlinear differential equations describing the motion of this subsystem.
Czasopismo
Rocznik
Tom
Strony
233--247
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Astronomy and Space Science Dept., Faculty of Sciences, Cairo University Giza, Egypt, kamel osman@yahoo.com
autor
- Theoretical Physics Dept. National Research Center Dokki, Giza, Egypt
Bibliografia
- [1] Kamel, O. S. M.: M.Sc. Thesis submitted to the Faculty of Sciences, Cairo University, Egypt, 1970.
- [2] Kamel, O. S. M.: Ph.D. Thesis submitted to the Faculty of Sciences, Cairo University, Egypt, 1973.
- [3] Kamel, O. S. M. and Bakry, A.A.: Astrophysics and Space Science 78, 3–26 1981.
- [4] Kamel, O. S. M.: The Moon and the Planets , 26, 239–277, 1982.
- [5] Brouwer, D. and Clemence, G. M.: Methods of Celestial Mechanics, Academic Press, 1965.
- [6] Murray, C. D. and Dermott, S. F.: Solar System Dynamics, Cambridge University Press, 1999.
- [7] Moursund, D. G. and Duris, C. S.: Elementary Theory & Application of Numerical Analysis, McGraw – Hill, Inc., 1967.
- [8] Braun, M.: Differential Equations and Their Applications, Springer – Verlag, New York, Inc., 1983.
- [9] Stark, P. A.: Introduction to numerical methods, MacMillan Company, London, 1970.
- [10] Kamel, O. K.: A semi – analytic first order Jupiter – Saturn planetary theory. (Part I: outline), Mechanics and Mechanical Engineering, 20(1), 2016.
- [11] El Mabsout, B.: Private communication, 2012.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f65e7fbd-fafa-445b-9d49-f54369b2e081