Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 23, iss. 1 | 42--48
Tytuł artykułu

Comparison of Natural Abiotic Factors and Pollution Influence on the Soil Enzymative Activity

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The enzymatic pool of the soil is formed over a long period of time under the influence of many natural factors. Therefore, the information on the lability of soil enzymes under the influence of the main abiotic factors is necessary for the diagnosis of the anthropogenic influence on ecosystems. The aim of the study was to determine the variability of the activity of catalase, invertase, and urease in sod-podzolic and grey forest soils in response to the main abiotic factors and model pollution. The studied areas belonged to the subzones of middle and southern taiga and mixed forests, the average annual temperature ranged from 2.9 to 6.6 ℃, and the рНKCl level of extracts from soils was in the range of 4.2–5.6. It was shown that the activity of exozymes in the soil of southern taiga and mixed forests depends most of all on the average annual temperature and pH level. No relationship between the enzyme activity and soil organic carbon was found. Artificial soil salinity led to an increase in the activity of invertase and urease. Soil contamination with zinc (25.5 and 255.0 mg/kg of dry soil) suppressed only the invertase activity. Thus, the influence of natural abiotic factors on the activity of soil enzymes was more often found than the chemical load.
Wydawca

Rocznik
Strony
42--48
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Vyatka State University, Moskovskaya Str. 36, Kirov, 610000, Kirov region, Russia
  • Vyatka State University, Moskovskaya Str. 36, Kirov, 610000, Kirov region, Russia, tovstik2006@inbox.ru
Bibliografia
  • 1. Amat D., Thakur J.K., Mandal A., Patra A.K., Reddy K.K.K. 2021. Microbial Indicator of Soil Health: Conventional to Modern Approaches. Part of the Microorganisms for Sustainability book series MICRO. Rhizosphere Microbes, 23, 213–233.
  • 2. Baikhamurova M.O., Yuldashbek D.H., Sainova G.A., Anarbekova G.D. 2020. Change of catalase and urease activity at high content of heavy metals (Pb, Zn, Cd) in serozem. European Journal of Natural History, 3, 70–73. https://world-science.ru/en/article/view?id=34089
  • 3. Bünemann E.K., Bongiorno G., Bai Z., Creamer R.E., de Deyn G., de Goede R., Fleskens L., Geissen V., Kuyper T.W., Mäder. P, Pulleman M., Sukkel W., van Groenigen J.W., Brussaard L. 2018. Soil quality – A critical review. Soil Biology and Biochemistry, 120, 105–125. DOI: 10.1016/j.soilbio.2018.01.030
  • 4. Cook F.J., Orchard V.A. 2008. Relationships between soil respiration and soil moisture. Soil biology & Biochemistry, 40(5), 1013–1018. DOI: 10.1016/j.soilbio.2007.12.012
  • 5. Datt N., Singh D. 2019. Enzymes in Relation to Soil Biological Properties and Sustainability. In: Sustainable management of soil and environment. (Eds.) Meena R.S., Kumar S., Bohra J.S., Jat M.L., 383–406. DOI: 10.1007/978-981-13-8832-3_11
  • 6. Eliseeva M.V. 2018. Biological activity of soils on asymmetric slopes of the steppe Cis-Urals. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 20, 5–2(85), 287–293.
  • 7. Farooq T.H., Kumar U., Mo J., Shakoor A., Wang J., Rashid M.H.U., Tufail M.A., Chen X.Y., Yan W.D. 2021. Intercropping of Peanut-Tea Enhances SoilEnzymatic Activity and Soil Nutrient Status at Different Soil Profiles in Subtropical Southern China. PlantsBasel, 10(5), 881. DOI: 10.3390/plants10050881
  • 8. Fu Q.L., Weng N.Y., Fujii M., Zhou D.M. 2018. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature. Chemosphere, 194, 285–296. DOI: 10.1016/j.chemosphere.2017.11.183
  • 9. Gaponyuk E.I., Malakhov S.V. 1985. Integrated system of indicators for environmental monitoring of soils. Migration of pollutants in soils and adjacent environments: Proceedings of the 4th All-Union meeting. Obninsk, Russia, June 1983, 3–10.
  • 10. Garcia-Ruiz R., Ochoa V., Vinegla B., Hinojosa M.B., Pena-Santiago R., Liebanas G., Linares J.C., Carreira J.A. 2009. Soil enzymes, nematode community and selected physico-chemical properties as soil quality indicators in organic and conventional olive oil farming: Influence of seasonality and site features. Applied soil ecology, 41(3), 305–314. DOI: 10.1016/j.apsoil.2008.12.004
  • 11. Hsiao C.J., Sassenrath G.F., Zeglin L.H., Hettiarachchi G.M., Rice C.W. 2018. Vertical changes of soil microbial properties in claypan soils. Soil biology & Biochemistry, 121, 154–164. DOI: 10.1016/j.soilbio.2018.03.012
  • 12. Igalavithana A.D., Farooq M., Kim K.H., Lee Y.H., Qayyum M.F., Al-Wabel M.I., Lee S.S., Ok Y.S. 2017. Determining soil quality in urban agricultural regions by soil enzyme. Environmental geochemistry and health, Special Issue SI, 39(6), 1531–1544. DOI 10.1007/s10653-017-9998-2
  • 13. Khaziev F.K. 2018. Ecological relations of the enzymatic activity of soils. Ecobiotech, 1(2), 80–92. DOI: 10.31163/2618-964x-2018-1-2-80-92
  • 14. Kolesnikov S.I., Kazeev K.Sh., Akimenko Yu.V. 2019. Development of regional standards for pollutants in the soil using biological parameters. Environmental Monitoring and Assessment, 191, 544. DOI: 10.1007/s10661-019-7718-3
  • 15. Kuznetsov A.V., Fesyun A.P., Samokhvalov S.G., Makhonko E.P. 1992. Guidelines for the determination of heavy metals in agricultural soils and products. Moscow: TsINAO, 13–24.
  • 16. Liu G.M., Zhang X.C., Wang X.P., Shao H.B., Yang J.S., Wang X.P. 2017. Soil enzymes as indicators of saline soil fertility under various soil amendments. Agriculture ecosystems & Environment, 237, 274–279. DOI: 10.1016/j.agee.2017.01.004
  • 17. Shahariar S., Helgason B., Soolanayakanahally R., Bedard-Haughn А. 2021. Soil Enzyme Activity as Affected by Land-Use, Salinity, and Groundwater Fluctuations in Wetland Soils of the Prairie Pothole Region. Wetlands, 41(2), 31. DOI: 10.1007/s13157-021-01431-8
  • 18. State standard 26213-91. 1992. Soils. Methods for the determination of organic matter. Moscow: Publishing house of standards, 8.
  • 19. State standard 26423-85. 2011. Soils. Methods for determining the specific electrical conductivity, pH and solid residue of the aqueous extract. Moscow: Standartinform, 8.
  • 20. State standard 26483-85. 1985. Soils. Preparation of a salt extract and determination of its pH by the CINAO method. Moscow: Publishing house of standards, 6.
  • 21. Wang A.S., Angle J.S., Chaney R.L., Delorme T.A., McIntosh M. 2006. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil biology & Biochemistry, 38(6), 1451–1461. DOI: 10.1016/j.soilbio.2005.11.001
  • 22. Workshop on agrochemistry: study guide. 2001. Ed. Academician of the Russian Academy of Agricultural Sciences V.G. Mineev. Moscow: Publishing house of Moscow State University, 689.
  • 23. Yang R.Y., Tang J.J., Chen X., Hu S.J. 2007. Effects of coexisting plant species on soil microbes and soil enzymes in metal lead contaminated soils. Applied soil ecology, 37(3), 240–246. DOI: 10.1016/j.apsoil.2007.07.004
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f5d7d2d7-d681-4108-b3c6-83335d444377
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.