Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, no. 2 | 74--84
Tytuł artykułu

Experimental study of Ni-based single-crystal superalloy: Microstructure evolution and work hardening of ground subsurface

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the grinding experiment of second-generation nickel-based single-crystal superalloy DD5 was carried out under different grinding parameters. The grinding force was recorded during the grinding process, and it was found that it decreased with increasing grinding speed and increased with feed speed. The microstructure evolution of ground subsurface was obtained by optical microscope (OM) and scanning electron microscope (SEM), and the elemental distribution of γ/γ' phases was investigated by energy dispersion spectrum (EDS). The results show that there are two layers different from the bulk material beneath the ground surface: (i) a white layer (WL) with no obvious structural features under limited observation scale and (ii) a severe deformed layer (SDL) with the elongated and rotated γ' phase and the narrowed γ channel. Elements segregation behavior exists in both the white layer and severe deformed layer. The grinding parameters have a great influence on the thickness of the white layer, which is due to the elemental diffusion behavior caused by intensive thermo-mechanical load. There is work hardening in the white layer, and the hardening degree aggravates with the increase in cutting speed and feed speed.
Wydawca

Rocznik
Strony
74--84
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China
autor
  • School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China, gongyd@mail.neu.edu.cn
  • School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China
autor
  • School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China
  • School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China
autor
  • School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China
autor
  • School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China
Bibliografia
  • [1] Bewlay BP, Jackson MR, Subramanian PR, Lewandowski JJ. Very high-temperature Nb-silicide-based composites. Proc Int Symp Niobium High Temp Appl. 2004;34:51–61.
  • [2] Li P, Gong Y, Xu Y, Qi Y, Sun Y, Zhang H. Inconel-steel functionally bimetal materials by hybrid directed energy deposition and thermal milling: Microstructure and mechanical properties. Arch Civ Mech Eng. 2019;19:820–31. https ://doi.org/10.1016/j.acme.2019.03.002.
  • [3] Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. 1999;3:513–23.
  • [4] Ding R, Knaggs C, Li H, Li YG, Bowen P. Characterization of plastic deformation induced by machining in a Ni-based superalloy. Mater Sci Eng A. 2020;778:139104. https ://doi.org/10.1016/j.msea.2020.13910 4.
  • [5] Jin D, Liu Z. Effect of cutting speed on surface integrity and chip morphology in high-speed machining of PM nickel-based superalloy FGH95. Int J Adv Manuf Technol. 2012;60:893–9. https ://doi.org/10.1007/s0017 0-011-3679-6.
  • [6] Imran M, Mativenga PT, Gholinia A, Withers PJ. Evaluation of surface integrity in micro drilling process for nickel-based superalloy. Int J Adv Manuf Technol. 2011;55:465–76. https ://doi.org/10.1007/s0017 0-010-3062-z.
  • [7] Liao Z, Polyakov M, Diaz OG, Axinte D, Mohanty G, Maeder X, Michler J, Hardy M. Grain refinement mechanism of nickel-based superalloy by severe plastic deformation - Mechanical machining case. Acta Mater. 2019;180:2–14. https ://doi.org/10.1016/j.actam at.2019.08.059.
  • [8] Thakur A, Gangopadhyay S. State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tools Manuf. 2016;100:25–54. https ://doi.org/10.1016/j.ijmac htool s.2015.10.001.
  • [9] Du J, Liu Z, Lv S. Deformation-phase transformation coupling mechanism of white layer formation in high speed machining of FGH95 Ni-based superalloy. Appl Surf Sci. 2014;292:197–203. https ://doi.org/10.1016/j.apsus c.2013.11.111.
  • [10] Ulutan D, Ozel T. Machining induced surface integrity in titanium and nickel alloys: A review. Int J Mach Tools Manuf. 2011;51:250–80. https ://doi.org/10.1016/j.ijmac htool s.2010.11.003.
  • [11] Gong S, Sun Y, Jin L, Su Z. Experimental study on fabricating micro-holes in DD5 single-crystal nickel-based superalloy using electrical discharge drilling. Arch Civ Mech Eng. 2020;20:1–16. https ://doi.org/10.1007/s4345 2-020-00089 -z.
  • [12] Umbrello D, Filice L. Improving surface integrity in orthogonal machining of hardened AISI 52100 steel by modeling white and dark layers formation. CIRP Ann Manuf Technol. 2009;58:73–6. https ://doi.org/10.1016/j.cirp.2009.03.106.
  • [13] Soo SL, Hood R, Aspinwall DK, Voice WE, Sage C. Machinability and surface integrity of RR1000 nickel based superalloy. CIRP Ann Manuf Technol. 2011;60:89–92. https ://doi.org/10.1016/j.cirp.2011.03.094.
  • [14] X Ping Ren, Z qiang Liu. Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy, Int J Miner Metall Mater. 25 (2018) 937–949. Doi: https ://doi.org/10.1007/s1261 3-018-1643-2.
  • [15] Azim S, Gangopadhyay S, Mahapatra SS, Mittal RK, Singh A, Singh RK. Study of cutting forces and surface integrity in micro drilling of a Ni-based superalloy. J Manuf Process. 2019;45:368–78. https ://doi.org/10.1016/j.jmapr o.2019.07.016.
  • [16] Hashimoto F, Guo YB, Warren AW. Surface integrity difference between hard turned and ground surfaces and its impact on fatigue life. CIRP Ann - Manuf Technol. 2006;55:81–4. https ://doi.org/10.1016/S0007 -8506(07)60371 -0.
  • [17] Guo YB, Schwach DW. An experimental investigation of white layer on rolling contact fatigue using acoustic emission technique. Int J Fatigue. 2005;27:1051–61. https ://doi.org/10.1016/j.ijfat igue.2005.03.002.
  • [18] Schwach DW, Guo YB. A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue. Int J Fatigue. 2006;28:1838–44. https ://doi.org/10.1016/j.ijfat igue.2005.12.002.
  • [19] Herbert C, Axinte DA, Hardy M, Withers P. Influence of surface anomalies following hole making operations on the fatigue performance for a nickel-based superalloy. J Manuf Sci Eng Trans ASME. 2014;136:1–9. https ://doi.org/10.1115/1.40276 19.
  • [20] Herbert CRJ, Axinte DA, Hardy MC, Brown PD. Investigation into the characteristics of white layers produced in a nickel-based superalloy from drilling operations. Procedia Eng. 2011;19:138–43. https ://doi.org/10.1016/j.proen g.2011.11.092.
  • [21] Chen Z, Colliander MH, Sundell G, Peng RL, Zhou J, Johansson S, Moverare J. Nano-scale characterization of white layer in broached Inconel 718. Mater Sci Eng A. 2017;684:373–84. https ://doi.org/10.1016/j.msea.2016.12.045.
  • [22] Veldhuis SC, Dosbaeva GK, Elfizy A, Fox-Rabinovich GS, Wagg T. Investigations of white layer formation during machining of powder metallurgical Ni-based ME 16 superalloy. J Mater Eng Perform. 2010;19:1031–6. https ://doi.org/10.1007/s1166 5-009-9567-7.
  • [23] Griffiths BJ. Mechanisms of white layer generation with reference to machining and deformation processes. J Tribol. 1987;109:525–30. https ://doi.org/10.1115/1.32614 95.
  • [24] Bosheh SS, Mativenga PT. White layer formation in hard turning of H13 tool steel at high cutting speeds using CBN tooling. Int J Mach Tools Manuf. 2006;46:225–33. https ://doi.org/10.1016/j.ijmac htool s.2005.04.009.
  • [25] Österle W, Li PX. Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates. Mater Sci Eng A. 1997;238:357–66. https ://doi.org/10.1016/S0921 -5093(97)00457 -7.
  • [26] Thakur A, Mohanty A, Gangopadhyay S. Comparative study of surface integrity aspects of Incoloy 825 during machining with uncoated and CVD multilayer coated inserts. Appl Surf Sci. 2014;320:829–37. https ://doi.org/10.1016/j.apsus c.2014.09.129.
  • [27] Thakur A, Gangopadhyay S, Maity KP. Effect of cutting speed and tool coating on machined surface integrity of ni-based super alloy. Procedia CIRP. 2014;14:541–5. https ://doi.org/10.1016/j.proci r.2014.03.045.
  • [28] Gong Y, Zhou Y, Wen X, Cheng J, Sun Y, Ma L. Experimental study on micro-grinding force and subsurface microstructure of nickel-based single crystal superalloy in micro grinding. J Mech Sci Technol. 2017;31:3397–410. https ://doi.org/10.1007/s1220 6-017-0629-8.
  • [29] Hegde SR, Kearsey RM, Beddoes JC. Designing homogenization-solution heat treatments for single crystal superalloys. Mater Sci Eng A. 2010;527:5528–38. https ://doi.org/10.1016/j.msea.2010.05.019.
  • [30] Sugui T, Shu Z, Fushun L, Anan L, Jingjing L. Microstructure evolution and analysis of a single crystal nickel-based superalloy during compressive creep. Mater Sci Eng A. 2011;528:4988–93. https ://doi.org/10.1016/j.msea.2011.03.035.
  • [31] Wang X, Zhou Y, Zhao Z, Zhang Z. The γ’ precipitate rafting and element distribution during hot isostatic pressing in a nickel-based superalloy. Mater Des. 2015;86:836–40. https ://doi.org/10.1016/j.matde s.2015.07.136.
  • [32] Zhang HP, Zhang QY, Ren Y, Shay T, Liu GL. Simulation and experiments on cutting forces and cutting temperature in high speed milling of 300m steel under cmql and dry conditions. Int J Precis Eng Manuf. 2018;19:1245–51. https ://doi.org/10.1007/s1254 1-018-0147-3.
  • [33] A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, S. Yue, Mechanical property and microstructure of linear friction welded WASPALOY, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42 (2011) 729–744. https://doi.org/https ://doi.org/10.1007/s1166 1-010-0457-2.
  • [34] Preuss M, Withers PJ, Baxter GJ. A comparison of inertia friction welds in three nickel base superalloys. Mater Sci Eng A. 2006;437:38–45. https ://doi.org/10.1016/j.msea.2006.04.058.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f5bc6ce4-3202-420a-a37d-f629482aebb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.