Warianty tytułu
Języki publikacji
Abstrakty
The aim of the research was to assess the quality of organic matter contained in sewage sludge composting products and their co-composting with fly ash and mineral wool. The object of the research were composts produced using stabilized sewage sludge from the municipal sewage treatment plant (SS_1C) and sewage sludge with the addition of 20% (SSF_2C) and 30% (SSF_3C) of fly ash and 5% (SSW_4C) and 10% (SSW_5C) of mineral wool. Selected physicochemical properties, fractional composition of humic compounds, and the degree and rate of humification were determined in compost samples taken after 180 days of composting. The reaction of the evaluated composts was close to optimal for mature composts. Co-composting of sewage sludge with mineral wool and ash increased the sorption capacity in composts compared to SS_1C. Due to the content of available P and Mg, the discussed composts formed the SS_1C>SSF_2C and SSF_3C>SSW_4C and SSW_5C series. However, in terms of available K content: SSF_2C and SSF_3C>SSW_4C and SSW_5C>SS_1C. In the SS_1C compost the organic carbon (TOC) content was slightly higher, but no statistically significant effect of the addition of fly ash and mineral wool on the TOC content in mature composts was confirmed. The addition of ash and mineral wool significantly increased the total nitrogen content. Due to the humification index, the composts formed the series: SSW_4C > SSW_5C > SSF_2C > SS_1C > SSF_3C. The values of the C-KH/C-KF ratio in SS_1C were typical for good quality soils, while in the remaining composts the C-KH/C-KF values were slightly lower. The degree of humification of the assessed composts was characterized by poorly humified organic materials, with the highest values of this indicator found in composts with the addition of mineral wool. The assessed quality indicators of organic matter indicate that the organic matter of composts from sewage sludge with the addition of mineral wool and 100% sludge was of the highest quality
Czasopismo
Rocznik
Tom
Strony
70--81
Opis fizyczny
Bibliogr. 68 poz., rys., tab.
Twórcy
autor
- Institute of Soil Science, Environment Engineering and Management, University of Life Sciences, ul. Leszczyńskiego 7, 20-069 Lublin, Poland, magdalena.myszura-dymek@up.lublin.pl
Bibliografia
- 1. Amir S., Hafidi M. 2001. Valorisation de boues de stations d’épuration des eaux usées par un bioprocédé aérobie “compostage”. Annales de Chimie - Science des Matériaux, 26, 409–414.
- 2. Amir S., Hafidi M., Merlina G., Revel J.C. 2005. Structural characterization of fulvic acids during composting of sewage sludge, Process Biochemistry, 40(5), 1693–1700. https://doi.org/10.1016/j. procbio.2004.06.037
- 3. Bekier J., Jamroz E., Walenczak-Bekier K., Uściła M. 2023. Soil Organic Matter Composition in Urban Soils: A Study of Wrocław Agglomeration, SW Poland. Sustainability, 15, 2277. https://doi. org/10.3390/su15032277
- 4. Bernal M.P., Navarro A.F., Sanchez-Monedero M.A., Roig A., Cegarra J. 1998. Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil. Soil Biology and Biochemistry, 30, 305–313. https://doi.org/10.1016/ S0038-0717(97)00129-6
- 5. Chabbi A., Lehmann J., Ciais P., Loescher H.W., Cotrufo M.F., Don A., SanClements M., Schipper L.. Six J., Smith P., Rumpel C. 2017. Aligning agriculture and climate policy. Nature Climate Change, 7, 307–309. 10.1038/nclimate3286
- 6. Chen L., Chen Y., Li Y., Liu Y., Jiang H., Li H., Yuan Y., Chen Y., Zou B. 2023. Improving the humification by additives during composting: A review. Waste Management, 158, 93–106. https://doi. org/10.1016/j.wasman.2022.12.040
- 7. Czekała J. 2008. Chemical properties of a compost produced on the basis of sewage sludge and different biowastes. Journal of Research and Applications in Agricultural Engineering, 53(3), 35–41.
- 8. Dogan H., Temel F.A., Yolcu O.C., Turan N.G. 2023. Modelling and optimization of sewage sludge composting using biomass ash via deep neural network and genetic algorithm. Bioresource Technology, 370, 128541, https://doi.org/10.1016/j. biortech.2022.128541
- 9. Doublet J., Francou C., Poitrenaud M., Houot S. 2011. Influence of bulking agents on organic matter evolution during sewage sludge composting; consequences on compost organic matter stability and N availability. Bioresource Technology, 102, 1298–1307. https://doi.org/10.1016/j. biortech.2010.08.065
- 10. Eftoda G., McCartney D. 2004. Determining the critical bulking agent requirement for municipal biosolids composting. Compost Science & Utilization, 12, 208–218. https://doi.org/10.1080/106565 7X.2004.10702185
- 11. Francou C., Poitrenaud M., Houot S. 2005. Stabilization of organic matter during composting: influence of process and feedstocks. Compost Science & Utilization, 13, 72–83. http://dx.doi.org/10.1080 /1065657X.2005.10702220
- 12. García-Gil J.C., Ceppi S.B., Velasco M.I., Polo A., Senesi N. 2004. Long-term effects of amendment with municipal solid waste compost on the elemental and acidic functional group composition and pH-buffer capacity of soil humic acids. Geoderma, 121, 135–142. http://dx.doi.org/10.1016/j. geoderma.2003.11.004
- 13. Gomes H.I., Mayes W.M., Rogerson M., Stewart D.I., Burke I.T. 2016. Alkaline residues and the environment: a review of impacts, management practices and opportunities. Journal Cleaner Production, 112, 3571–3582. https://doi.org/10.1016/j. jclepro.2015.09.111
- 14. Griffith S.M., Schnitzer M. 1975. Analytical characteristics of humic and fulvic acids extracted from tropical volcanic soils. Soil Science Society of America Journal, 39.5, 861–867.
- 15. Griszina L.A. 1986. Humus formation and humus state (Gumusoobrazovanie i gumusnoje sostojanie). PCV. Iż. Moscov. Universiteta.
- 16. Hoffland E., Kuyper T.W., Comans, R.N.J., Creamer R.E. 2020. Eco-functionality of organic matter in soils. Plant Soil, 455, 1–22. https://doi.org/10.1007/ s11104-020-04651-9
- 17. Hu Z.T., Huo W., Chen Y., Zhang Q., Hu M., Zheng W., Shao Y., Pan Z., Li X., Zhao J. 2022. Humic Substances Derived From Biomass Waste During Aerobic Composting and Hydrothermal Treatment: A Review. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/ fbioe.2022.878686
- 18. ISO 10390:2005; Soil Quality—Determination of pH. International Organization for Standardization: Geneva, Switzerland, 2005.
- 19. Istenič D., Prosenc F., Zupanc N., Turel M., Holobar A., Milačič R., Marković S., Mihelič R. 2024. Composting of recovered rock wool from hydroponics for the production of soil amendment. Environmental Science and Pollution Research. https://doi. org/10.1007/s11356-024-33041-2
- 20. Janzen H.H. 2006. The soil carbon dilemma: shall we hoard it or use it? Soil Biology and Biochemistry, 38, 419–424. https://doi.org/10.1016/j. soilbio.2005.10.008
- 21. Khalil A.I., Hassouna M.S., El-Ashqar H.M.A., Fawzi M. 2011. Changes in physical, chemical and microbial parameters during the composting of municipal sewage sludge. World J Microbiol Biotechnol, 27, 2359–2369. https://doi.org/10.1007/ s11274-011-0704-8
- 22. Kominko H., Gorazda K., Wzorek Z., Wojtas K. 2018. Sustainable Management of Sewage Sludge for the Production of Organo-Mineral Fertilizers. Waste Biomass Valor, 9, 1817–1826. https://doi. org/10.1007/s12649-017-9942-9
- 23. Kononowa M. 1968. Soil organic substances, their structure, properties and research methods. PWRiL, Warszawa, 1968, 88–97.
- 24. Krzywy E., Wołoszyk Cz., Iżewska A. 2000. Przemiany zawartości azotu amonowego i azotanowego zachodzące w kompostach z komunalnych osadów ściekowych podczas procesu ich rozkładu. Folia Universitatis Agriculturae Stetinensis, Agricultura (84), 211–216.
- 25. Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627. https://doi.org/10.1126/ science.1097396
- 26. Leroy B.L.M., Herath S., Sleutel S., De Neve S. 2008. The quality of exogenous organic matter: Short-term effects on soil physical properties and soil organic matter fractions. Soil Use and Management, 24(2), 139–147. https://doi. org/10.1111/j.1475-2743.2008.00142.x
- 27. Lombard K., Neil M.O., Ulery A., Mexal J., Onken B., Foster-Cox S., Sammis T. 2011. Fly ash and composted biosolids as a source of Fe for hybrid poplar: A greenhouse study. Applied and Environmental Soil Science, 475185. https://doi. org/10.1155/2011/475185
- 28. Mahapatra S., Ali M.H., Samal K. 2022. Assessment of compost maturity-stability indices and recent development of composting bin. Energy Nexus, 6, 100062. https://doi.org/10.1016/j. nexus.2022.100062
- 29. Malina, A. 2004. Multidimensional Analysis of the Spatial Differentiation of the Structure of the Polish Economy by Voivodship; Publishing House of the Cracow University of Economics (Wydawnictwo Akademii Ekonomicznej): Kraków, Poland.
- 30. Marmo L., Feix I., Bourmeau E., Amlinger F., Bannick C.G., De Neve S., Favoino E., Gendebien A., Gibert J., Givelet M., Leifert I., Morris R., Rodriguez Cruz A., Ruck F., Siebert S., Tittarelli F. 2004. Reports of the technical working groups established under the thematic strategy for soil protection. Volume - III. Organic matter and biodiversity. Taskgroup 4 onexogenous organic matter. Office for Official Publications of the European Communities, Luxembourg.
- 31. Mayur S.J., Siddhartha P., Ajay S.K 2019. Kalamdhad, Interplay of physical and chemical properties during in-vessel degradation of sewage sludge, Waste Management, 98, 58–68. https://doi. org/10.1016/j.wasman.2019.08.015
- 32. Miner F.D., Koenig R.T., Miller B.E. 2001. The influence of bulking material type and volume on in- house composting in high-rise, caged layer facilities. Miner F.D., Koenig R.T., Miller B.E. 2001. The influence of bulking material type and volume on in- house composting in high-rise, caged layer facilities. Compost Science & Utilization, 9, 50–59. https://doi.org/10.1080/1065657X.2001.10702016
- 33. Muscarella S.M., Badalucco L., Laudicina V.A., Wang Z., Mannina G. 2023. Wastewater treatment sludge composting. In Current Developments in Biotechnology and Bioengineering, 115–136. https:// doi.org/10.1016/B978-0-323-99920-5.00008-1
- 34. Myszura-Dymek M., Żukowska, G. 2023. The Influence of Sewage Sludge Composts on the Enzymatic Activity of Reclaimed Post-Mining Soil. Sustainability, 15, 4749. https://doi.org/10.3390/su15064749
- 35. Ngo P.T., Rumpel C., Doan T.T., Jouquet P. 2012. The effect of earthworms on carbon storage andsoil organic matter composition in tropical soil amended with compost and vermicompost. Soil Biology andBiochemistry, 50, 214–220. https://doi. org/10.1016/j.soilbio.2012.02.037
- 36. Ngo P.T., Rumpel C., Ngo Q.A., Alexis M., Vargas G.V., Gil M.L.M., Dang D.K., Jouquet P. 2013. Biological and chemical reactivity and phosphorus forms of buffalo manure compost, vermicompost and their mixture with biochar. Bioresource Technology, 148, 401–407. https://doi.org/10.1016/j. biortech.2013.08.098
- 37. Nguyen T.B., Shima K. 2019. Composting of Sewage Sludge with a Simple Aeration Method and its Utilization as a Soil Fertilizer. Environmental Management, 63, 455–465. https://doi.org/10.1007/ s00267-017-0963-8
- 38. Nguyen T.H., Shindo H. 2011. Quantitative and Qualitative Changes of Humus in Whole Soils and Their Particle Size Fractions as Influenced by Different Levels of Compost Application. Agricultural Science Research Journals, 2, 1–8. http://dx.doi. org/10.4236/as.2011.21001
- 39. Ouatmane A., Provenzano M.R., Hafidi M., Senesi N. 2000. Compost maturity assessment using calorimetry, spectroscopy and chemical analysis. Compost Science & Utilization, 8, 124–134. https://doi. org/10.1080/1065657X.2000.10701758
- 40. Peltre C., Nyord T., Bruun S., Jensen L.S, Magid J. 2015. Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage. Agriculture, Ecosystems & Environment, 211, 94–101. https://doi. org/10.1016/j.agee.2015.06.004
- 41. PN-EN 15936:2013:02. Available online: https:// sklep.pkn.pl/pn-en-15936-2013-02p.html (accessed on 10 April 2024).
- 42. Polish Committee for Standardization. Polish Standard: The Chemical and Agricultural Analysis of the Soil—Determination of the Content of Assailable Phosphorus in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 1996.
- 43. Poluszyńska J. 2013. Możliwości zastosowania popiołów ze spalania biomasy w gospodarowaniu osadami ściekowymi. Prace Instytutu Ceramiki i Materiałów Budowlanych, 13, 49–59.
- 44. Raviv M. 2005. Production of high-quality composts for horticultural purposes: a mini-review. HortTechnology, 15, 52–57. https://doi.org/10.21273/ HORTTECH.15.1.0052
- 45. Rivers E.N., Heitman J.L., McLaughlin R.A., Howard A.M. 2021. Reducing roadside runoff: Tillage and compost improve stormwater mitigation in urban soils. Journal of Environmental Management, 280, 111732. https://doi.org/10.1016/j. jenvman.2020.111732
- 46. Roy D., Azaïs A., Benkaraache S., Drogui P., Tyagi R.D. 2018. Composting leachate: characterization, treatment, and future perspectives. Reviews in Environmental Science and Bio/Technology, 17, 323349. https://doi.org/10.1007/s11157-018-9462-5
- 47. Schlichting E., Blume H.P., Stahr K. 1995. Bodenkundliches Praktikum. Pareys Studientexte 81. Berlin: Blackwell Wissenschafts-Verlag.
- 48. Schnitzer M. 1978. Humic substances: chemistry and reactions. Soil organic matter, Elsevier, Amsterdam.
- 49. Shan J., Brune A., Ji R. 2010. Selective Digestion of the Proteinaceous Component of Humic Substances by the Geophagous Earthworms Metaphire Guillelmi and Amynthas Corrugatus. Soil Biology and Biochemistry, 42(9), 1455–1462. https://doi. org/10.1016/j.soilbio.2010.05.008
- 50. Siebielec G., Łopatka A., Smreczak B., Kaczyński R., Siebielec S., Koza P., Dach J. 2020. Organic matter in mineral soils in Poland. Studies and Reports IUNG-PIB, 64(18), 9–30.
- 51. Siebielec G., Siebielec S., Kaczyński R., Gmur D., Koza D. 2021. Exogenous Organic Matter as an Element of the European Green Deal. IUNG-PIB Studies and Reports, 66(20), 27–42. https://doi. org/10.26114/sir.iung.2021.66.02
- 52. Singh Y.P., Arora S., Mishra V.K., Gupta R.H., Mishra S.J. 2023. Changes in physicochemical and microbial properties during standardization of on-farm composting of municipal solid waste. Journal of Natural Resource Conservation and Management, 4(1), 40–49. http://dx.doi.org/10.51396/ ANRCM.4.1.2023.40-49
- 53. Sobolweski M. 2020. Europejski Zielony Ład – w stronę neutralności klimatycznej. Biuro Analiz Sejmowych. 9(275), 1–4.
- 54. Soil Survey Laboratory Methods Manual. Soil Survey Investigation Report; United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center: Washington, DC, USA, 1996.
- 55. Taskin Z., Bilgili S. 2023. Using Sewage Sludge as Alternative Fertilizer: Effects on Turf Performance of Perennial Ryegrass. Sustainability, 15, 13597. https://doi.org/10.3390/su151813597
- 56. Temel F.A. 2023. Evaluation of the influence of rice husk amendment on compost quality in the composting of sewage sludge. Bioresource Technology, 373, 128748. https://doi.org/10.1016/j. biortech.2023.128748
- 57. Tomati U., Madejon E., Galli E. 2000. Evaluation of humic acid molecular weight as an index of compost stability. Compost Science & Utilization, 8, 108–115. http://dx.doi.org/10.1080/106565 7X.2000.10701756
- 58. Villasenor J., Rodriguez L., Fernandez F.J. 2011. Composting domestic sewage sludge with natural zeolites in a rotary drum reactor. Bioresource Technology, 102, 1447–1454. https://doi.org/10.1016/j. biortech.2010.09.085
- 59. Vráblová M., Smutná K., Chamrádová K., Vrábl D., Koutník I., Rusín J., Bouchalová M., Gavlová A., Sezimová H., Navrátil M., Chalupa R., Tenklová B., Pavlíková J. 2024. Co-composting of sewage sludge as an effective technology for the production of substrates with reduced content of pharmaceutical residues, Science of The Total Environment, 915, 169818. https://doi. org/10.1016/j.scitotenv.2023.169818
- 60. Wójcik M., Stachowicz F., Masłoń A. 2017. Możliwość wykorzystania popiołów lotnych w celu poprawy odwadniania osadów ściekowych. Journal Of Civil Engineering, Environment And Architecture, 64 (1/17), 377–393. https://doi.org/10.7862/ rb.2017.35
- 61. Wyszkowski M., Wyszkowska J., Kordala N., Borowik A. 2022. Effects of Coal and Sewage Sludge Ashes on Macronutrient Content in Maize (Zea mays L.) Grown on Soil Contaminated with Eco-Diesel Oil. Materials, 15, 525. https://doi. org/10.3390/ma15020525
- 62. Yang F., Li G.X., Yang Q.Y., Luo W.H. 2013. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting. Chemosphere, 93, 1393–1399. https://doi.org/10.1016/ jchemosphere.2013.07.002
- 63. Yu C.L., Deng Q., Jian S., Li J., Dzantor E.K., Hui D. 2019. Effects of fly ash application on plant biomass and element accumulations: A meta-analysis. Environmental Pollution, 250, 137–142. https://doi. org/10.1016/j.envpol.2019.04.013
- 64. Zhai X., Zhang L., Wu R., Wang M., Lian J., Munir M.A.M., Chen D., Liu L., Yang X. 2022. Molecular composition of soil organic matter (SOM) regulate qualities of tobacco leaves. Scientific Reports, 12, 15317. https://doi.org/10.1038/ s41598-022-19428-6
- 65. Zheng P., Haifeng L. 2010. Sewage sludge conditioning with coal fly ash modified by sulfuric acid. The Chemical Engineering Journal, 156(3), 616622. https://doi.org/10.1016/j.cej.2010.02.021
- 66. Żukowska G., Baran S., Wójcikowska-Kapusta A. 2012. Organic carbon content and fractional composition of organic matter in soil reclaimed with sewage sludge. Chemical industry, 91(6), 1267—1269.
- 67. Żukowska G., Bik-Małodzińska M., Myszura M., Pawłowski A., Pawłowska M. 2021. Effect of sewage sludge and mineral wool on water retention and heavy metal content in medium agronomic category soil. Environment Protection Engineering, 47(4). https://doi.org/10.37190/epe210407
- 68. Żukowska G., Myszura-Dymek M., Roszkowski S., Olkiewicz M. 2023. Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields. Sustainability, 15, 13341. https://doi.org/10.3390/su151813341
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f5ad01a7-3914-4438-87a5-12233d2264df