Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 4 | 184--202
Tytuł artykułu

In Vitro Drought Tolerance of Some Grape Rootstocks

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Climate change is increasing the frequency and severity of drought strain, which poses a first-rate task to grapevine production. This have a look at investigated the response of four grape rootstocks (Richter, Salt Creek, Freedom, and Dogridge) to water deficit prompted by way of polyethylene glycol (PEG). Two pressure induction techniques had been as compared: surprise remedy, related to direct exposure of cultures to growing PEG concentrations (0%, 2%, 4%, 6%, 8%, and 10%); and step-clever long-time period remedy, steadily increasing PEG concentrations (0%, 6%, 8%, and 10%) through the years. The essential findings were as follows: drought strain negatively impacted all rootstocks, leading to decreased morphological tendencies (shoot number, period, and root number), survival %, and biochemical parameters (chlorophyll a and b, carotenoids, stomata popularity, RWC content material). It additionally led to reduced nutrient accumulation (N, P, K, Mg, Ca) in leaves. However, all rootstocks exhibited increased Proline content and antioxidant enzyme hobby under all PEG concentrations. In phrases of rootstock-unique responses, Richter and Salt Creek showed the maximum sturdy performance, maintaining better shoot and root growth, nutrient content, and photosynthetic hobby compared to Freedom and Dogridge. On the alternative hand, Freedom and Dogridge exhibited extra sensitivity to drought stress, experiencing stronger discounts in boom, biochemical parameters, and nutrient accumulation. In conclusion Richter and Salt Creek rootstocks could be valuable equipment for reinforcing drought tolerance in grapevines. The two carried out PEG remedies provide valuable methods for screening and deciding on drought-tolerant grape rootstocks.
Słowa kluczowe
Wydawca

Rocznik
Strony
184--202
Opis fizyczny
Bibliogr. 57 poz., rys.
Twórcy
  • Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia, aalebidi@ksu.edu.sa
  • Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia, adelsaif@ksu.edu.sa
  • Key Laboratory of Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, PR China, mhfarouk@jlau.edu.cn
  • Department of Horticulture, Faculty of Agriculture, Al-Azhar University, Cairo, 11884, Egypt, ashrafezat@azhar.edu.eg
Bibliografia
  • 1. Abdel Aziz, H., Sharaf, M., Omar, M., Abou ElYazied, A., Ibrahim AlJwaizea, N., Ismail, S., M. A. Omar, M., Alharbi, K., Elkelish, A., Tawfik, M. (2023). Improvement of Selected morphological, physiological, and biochemical parameters of banana (Musa acuminata L.) using potassium silicate under drought stress condition grown in vitro. Phyton, 92(4), 1019–1036. https://doi.org/10.32604/ phyton.2023.026769
  • 2. Abdel-Aziz, H.F., Hamdy, A.E., Sharaf, A., Abd El-wahed, A.E.N., Elnaggar, I.A., Seleiman, M. ., Omar, M., Al-Saif, A.M., Shahid, M.A., Sharaf, M. (2023). Effects of fogging system and nitric oxide on growth and yield of ‘Naomi’ mango trees exposed to frost stress. Life, 13(6), 1359. https://doi. org/10.3390/life13061359
  • 3. Adhikari, D., Albataineh, H., Androic, D., Aniol, K., Armstrong, D.S., Averett, T., Ayerbe Gayoso, C., Barcus, S., Bellini, V., Beminiwattha, R.S., Benesch, J.F., Bhatt, H., Bhatta Pathak, D., Bhetuwal, D., Blaikie, B., Campagna, Q., Camsonne, A., Cates, G.D., Chen, Y., PREX Collaboration. (2021). Accurate determination of the neutron skin thickness of Pb 208 through parity-violation in electron scattering. Physical Review Letters, 126(17), 172502. https://doi.org/10.1103/PhysRevLett.126.172502
  • 4. Aebi, H. (1984). Catalase in vitro. In: Methods in Enzymology, Elsevier, 105, 121–126. https://doi. org/10.1016/S0076-6879(84)05016-3
  • 5. Akbarpour, E., Imani, A., Ferdowskhah Yeganeh, S. (2017). Physiological and morphological responses of almond cultivars under in vitro drought stress. Journal of Nuts, 8(1). https://doi.org/10.22034/ jon.2017.530393
  • 6. Al-Taha, H.A.K. (2013). Effect of shock and gradual drought by PEG on callus growth and proline accumulation in sour orange (Citrus x aurantium). Advances in Agriculture & Botanics-International Journal of the Bioflux Society, 5(2).
  • 7. Asfere, Y., Zenabu, D., Kassahu, E., Adam, A., Kebede, A., Gasha, A., Dida, A., Atlaw, A., Tefera, B., Wolore, T. (2020). In vitro screening of selected accessions of wheat variety for drought tolerance in Ethiopia. Journal of Plant Sciences,
  • 8(5), 123. https://doi.org/10.11648/j.jps.20200805.14 8. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi. org/10.1007/BF00018060
  • 9. Beyene, A., Hussien, S., Pangirayi, T., Mark, L. (2015). Physiological mechanisms of drought tolerance in sorghum, genetic basis and breeding methods: A review. African Journal of Agricultural Research,
  • 10(31), 3029–3040. https://doi.org/10.5897/ AJAR2015.9595 10. Bhargava, S., Sawant, K. (2013). Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breeding, 132(1), 21–32. https://doi.org/10.1111/pbr.12004
  • 11. Blum, A. (2011). Plant water relations, plant stress and plant production. In: A. Blum, Plant Breeding for Water-Limited Environments. Springer New York, 11–52. https://doi.org/10.1007/978-1-4419-7491-4_2
  • 12. Brauman, K.A., Siebert, S., Foley, J.A. (2013). Improvements in crop water productivity increase water sustainability and food security – A global analysis. Environmental Research Letters, 8(2), 024030. https://doi.org/10.1088/1748-9326/8/2/024030
  • 13. Chacón-Vozmediano, J.L., Martínez-Gascueña, J., García-Navarro, F.J., Jiménez-Ballesta, R. (2020). Effects of water stress on vegetative growth and ‘Merlot’ grapevine yield in a semi-arid mediterranean climate. Horticulturae, 6(4), 95. https://doi. org/10.3390/horticulturae6040095
  • 14. Chance, B., Maehly, A.C. (1955). Assay of catalases and peroxidases. In: Methods in Enzymology. Elsevie, 2, 764–775. https://doi.org/10.1016/ S0076-6879(55)02300-8
  • 15. Cui, K., Shu, C., Zhao, H., Fan, X., Cao, J., Jiang, W. (2020). Preharvest chitosan oligochitosan and salicylic acid treatments enhance phenol metabolism and maintain the postharvest quality of apricots (Prunus armeniaca L.). Scientia Horticulturae, 267, 109334. https://doi.org/10.1016/j. scienta.2020.109334
  • 16. Duckworth, H.W., Coleman, J.E. (1970). Physicochemical and kinetic properties of mushroom tyrosinase. Journal of Biological Chemistry, 245(7), 1613–1625. https://doi.org/10.1016/ S0021-9258(19)77137-3
  • 17. Dvořák, P., Krasylenko, Y., Zeiner, A., Šamaj, J., Takáč, T. (2021). Signaling toward reactive oxygen species-scavenging enzymes in plants. Frontiers in Plant Science, 11, 618835. https://doi.org/10.3389/ fpls.2020.618835
  • 18. Frioni, T., Biagioni, A., Squeri, C., Tombesi, S., Gatti, M., Poni, S. (2020). Grafting cv. grechetto gentile vines to new M4 Rootstock improves leaf gas exchange and water status as compared to commercial 1103P Rootstock. Agronomy, 10(5), 708. https://doi.org/10.3390/agronomy10050708
  • 19. Garcıa-Mata, C., Lamattina, L. (2001). Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology, 126(3), 1196–1204. https://doi.org/10.1104/ pp.126.3.1196
  • 20. Gechev, T., Petrov, V. (2020). Reactive oxygen species and abiotic stress in plants. International Journal of Molecular Sciences, 21(20), 7433. https://doi. org/10.3390/ijms21207433
  • 21. Gelaw, T. A., Goswami, K., Sanan-Mishra, N. (2023). Individual and interactive effects of nitrogen and phosphorus on drought stress response and recovery in maize seedlings. Agriculture, 13(3), 654. https://doi.org/10.3390/agriculture13030654
  • 22. Gholamin, R., Khayatnezhad, M. (2020). Assessment of the correlation between chlorophyll content and drought resistance in corn cultivars (Zea mays). Helix, 10(5), 93–97. https://doi. org/10.29042/2020-10-5-93-97
  • 23. Gomiero, T. (2016). Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability, 8(3), 281. https://doi.org/10.3390/ su8030281
  • 24. Gutiérrez-Gamboa, G., Zheng, W., Martínez De Toda, F. (2021). Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Research International, 139, 109946. https://doi. org/10.1016/j.foodres.2020.109946
  • 25. Hong, J., Wang, C., Wagner, D.C., Gardea-Torresdey, J.L., He, F., Rico, C.M. (2021). Foliar application of nanoparticles: Mechanisms of absorption, transfer, and multiple impacts. Environmental Science: Nano, 8(5), 1196–1210. https://doi.org/10.1039/ D0EN01129K
  • 26. Jan, A.U., Hadi, F., Ditta, A., Suleman, M., Ullah, M. (2022). Zinc-induced anti-oxidative defense and osmotic adjustments to enhance drought stress tolerance in sunflower (Helianthus annuus L.). Environmental and Experimental Botany, 193, 104682. https://doi.org/10.1016/j.envexpbot.2021.104682
  • 27. Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., Sharma, A. (2020). The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. pplied Sciences, 10(16), 5692. https://doi. org/10.3390/app10165692
  • 28. Kathpalia, R., Bhatla, S.C. (2018). Plant mineral nutrition. In: S.C. Bhatla, M.A. Lal, Plant Physiology, Development and Metabolism 37–81). Springer Singapore. https://doi.org/10.1007/978-981-13-2023-1_2
  • 29. Khadka, K., Earl, H.J., Raizada, M.N., Navabi, A. (2020). A physio-morphological trait-based approach for breeding drought tolerant wheat. Frontiers in Plant Science, 11, 715. https://doi. org/10.3389/fpls.2020.00715
  • 30. Khodabin, G., Tahmasebi‐Sarvestani, Z., Rad, A. H.S., Modarres‐Sanavy, S.A.M. (2020). Effect of drought stress on certain morphological and physiological characteristics of a resistant and a sensitive canola cultivar. Chemistry and Biodiversity, 17(2), e1900399. https://doi.org/10.1002/cbdv.201900399
  • 31. Lavoie‐Lamoureux, A., Sacco, D., Risse, P., Lovisolo, C. (2017). Factors influencing stomatal conductance in response to water availability in grapevine: A meta‐analysis. Physiologia Plantarum, 159(4), 468–482. https://doi.org/10.1111/ppl.12530
  • 32. Levin, A.G., Peres, M., Noy, M., Love, C., Gal, Y., Naor, A. (2018). The response of field-grown mango (cv. Keitt) trees to regulated deficit irrigation at three phenological stages. Irrigation Science, 36(1), 25–35. https://doi.org/10.1007/s00271-017-0557-5
  • 33. Lichtenthaler, H.K., Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1). https://doi. org/10.1002/0471142913.faf0403s01
  • 34. Luo, X., Tong, S., Fang, Z., Qu, Z. (2019). Frontiers: machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, mksc.2019.1192. https://doi. org/10.1287/mksc.2019.1192
  • 35. Mahmood, M., Bidabadi, S. S., Ghobadi, C., Gray, D. J. (2012). Effect of methyl jasmonate treatments on alleviation of polyethylene glycol-mediated water stress in banana (Musa acuminata cv. ‘Berangan’, AAA) shoot tip cultures. Plant Growth Regulation, 68(2), 161–169. https://doi.org/10.1007/ s10725-012-9702-6
  • 36. Medina-Villar, S., Uscola, M., Pérez-Corona, M. E., Jacobs, D.F. (2020). Environmental stress under climate change reduces plant performance, yet increases allelopathic potential of an invasive shrub. Biological Invasions, 22(9), 2859–2881. https://doi. org/10.1007/s10530-020-02286-6
  • 37. Mirbehbahani, G.S., Soltani Salehabadi, F., Shokrpour, M. (2023). Differential assessment of growth, physiological parameters, and leaf responses to salinity stress in inbred melon lines. Gesunde Pflanzen, 75(6), 2623–2638. https://doi.org/10.1007/ s10343-023-00877-6
  • 38. Mohammadi, R. (2018). Breeding for increased drought tolerance in wheat: A review. Crop and Pasture Science, 69(3), 223. https://doi.org/10.1071/ CP17387
  • 39. Mohsen, K.H., Ibrahim, A., Emara, H.A., Komor, E. (2006). Impact of polyethylene glycol-induced water stress on growth and development of shoot tip cultures from different banana (Musa spp.) cultivars. Journal of Applied Horticulture, 08(01), 53–57. https://doi.org/10.37855/jah.2006.v08i01.13
  • 40. Molassiotis, A., Fotopoulos, V. (2011). Oxidative and nitrosative signaling in plants: Two branches in the same tree? Plant Signaling and Behavior, 6(2), 210–214. https://doi.org/10.4161/psb.6.2.14878
  • 41. Molnar, S., Clapa, D., Mitre, V. (2022). Response of the five highbush blueberry cultivars to in vitro induced drought stress by polyethylene glycol. Agronomy, 12(3), 732. https://doi.org/10.3390/ agronomy12030732
  • 42. Nxele, X., Klein, A., Ndimba, B. K. (2017). Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany, 108, 261–266. https://doi.org/10.1016/j.sajb.2016.11.003
  • 43. Patade, V. Y., Bhargava, S., Suprasanna, P. (2012). Effects of NaCl and iso-osmotic PEG stress on growth, osmolytes accumulation and antioxidant defense in cultured sugarcane cells. Plant Cell, Tissue and Organ Culture,108(2), 279–286. https://doi. org/10.1007/s11240-011-0041-5
  • 44. Pradhan, N., Singh, P., Dwivedi, P., Pandey, D. K. (2020). Evaluation of sodium nitroprusside and putrescine on polyethylene glycol induced drought stress in Stevia rebaudiana Bertoni under in vitro condition. Industrial Crops and Products, 154, 112754. https://doi.org/10.1016/j.indcrop.2020.112754
  • 45. Prgomet, I., Pascual-Seva, N., Morais, M.C., Aires, A., Barreales, D., Castro Ribeiro, A., Silva, A.P., I.R.N.A. Barros, A., Gonçalves, B. (2020). Physiological and biochemical performance of almond trees under deficit irrigation. Scientia Horticulturae, 261, 108990. https://doi.org/10.1016/j.scienta.2019.108990
  • 46. Seleiman, M. F., Ahmad, A., Battaglia, M. L., Bilal, H.M., Alhammad, B.A., Khan, N. (2023). Zinc oxide nanoparticles: A unique saline stress mitigator with the potential to increase future crop production. South African Journal of Botany, 159, 208–218. https://doi.org/10.1016/j.sajb.2023.06.009
  • 47. Sharma, K., Gupta, S., Thokchom, S. D., Jangir, P., Kapoor, R. (2021). Arbuscular mycorrhiza-mediated regulation of polyamines and aquaporins during abiotic stress: Deep insights on the recondite players. Frontiers in Plant Science, 12, 642101. https:// doi.org/10.3389/fpls.2021.642101
  • 48. Singh, M., Kumar, J., Singh, S., Singh, V. P., Prasad, S. M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Reviews in Environmental Science and Bio/Technology, 14(3), 407–426. https://doi.org/10.1007/ s11157-015-9372-8
  • 49. Sivritepe, N., Erturk, U., Yerlikaya, C., Turkan, I., Bor, M., Ozdemir, F. (2008). Response of the cherry rootstock to water stress induced in vitro. Biologia Plantarum, 52(3), 573–576. https://doi.org/10.1007/ s10535-008-0114-4
  • 50. Su, Y.C., Burnouf, P.A., Chuang, K.H., Chen, B.M., Cheng, T.L., Roffler, S.R. (2017). Conditional internalization of PEGylated nanomedicines by PEG engagers for triple negative breast cancer therapy. Nature Communications, 8(1), 15507. https://doi. org/10.1038/ncomms15507
  • 51. Szopkó, D., Molnár, I., Darkó, É. (2017). PEG-mediated osmotic stress responses of wheat-barley addition lines. Acta Biologica Plantarum Agriensis, 5(2), 3–22. https://doi.org/10.21406/abpa.2017.5.2.3
  • 52. Van Leeuwen, Destrac-Irvine, Dubernet, Duchêne, Gowdy, Marguerit, Pieri, Parker, De Rességuier, Ollat. (2019). An update on the impact of climate change in viticulture and potential adaptations. Agronomy, 9(9), 514. https://doi.org/10.3390/ agronomy9090514
  • 53. Wang, Z., Zheng, P., Meng, J., Xi, Z. (2015). Effect of exogenous 24-epibrassinolide on chlorophyll fluorescence, leaf surface morphology and cellular ultrastructure of grape seedlings (Vitis vinifera L.) under water stress. Acta Physiologiae Plantarum, 37(1), 1729. https://doi.org/10.1007/s11738-014-1729-z
  • 54. Xie, M., Wang, Z., Wan, X., Weng, J., Tu, M., Mei, J., Wang, Z., Du, X., Wang, L., Chen, C. (2020). Crosslinking effects of branched PEG on decellularized lungs of rats for tissue engineering. Journal of Biomaterials Applications, 34(7), 965–974. https:// doi.org/10.1177/0885328219885068
  • 55. Yosefi, A., Mozafari, A.A., Javadi, T. (2020). Jasmonic acid improved in vitro strawberry (Fragaria × ananassa Duch.) resistance to PEG-induced water stress. Plant Cell, Tissue and Organ Culture, 142(3), 549558. https://doi.org/10.1007/s11240-020-01880-9
  • 56. Zhan, L., Hu, J., Lim, L.-T., Pang, L., Li, Y., Shao, J. (2013). Light exposure inhibiting tissue browning and improving antioxidant capacity of fresh-cut celery (Apium graveolens var. Dulce). Food Chemistry, 141(3), 2473–2478. https://doi.org/10.1016/j. foodchem.2013.05.035
  • 57. Zhang, F., Zhou, G. (2019). Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecology, 19(1), 18. https://doi.org/10.1186/ s12898-019-0233-0
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f584eb05-2fa6-445e-a184-8e8a31baa182
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.