Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | z. 197, t. 2 | 123-134
Tytuł artykułu

Przegląd narzędzi stosowanych w pomiarach siłowników miękkich

Warianty tytułu
EN
Review of tools used in the soft actuators measurements
Języki publikacji
PL
Abstrakty
PL
Praca przedstawia przegląd literatury dotyczącej stanowisk pomiarowych siłowników robotów miękkich, w celu określenia jakie parametry oraz metody pomiarowe pozwolą na odpowiednie zweryfikowanie ich cech. W przeglądzie skupiliśmy się głownie na siłownikach napędzanych pneumatycznie. W pracy przedstawiono stosowane najczęściej układy zasilania oraz elementy funkcjonalne stanowisk służące do pomiaru ciśnienia, siły, kąta i przemieszczenia. Opisano także programy i systemy sterowania wykorzystywane w stanowiskach pomiarowych. Na podstawie wykonanego przeglądu określiliśmy jakie elementy pneumatycznych stanowisk pomiarowych najczęściej występują w literaturze oraz jakie elementy składowe są niezbędne do zebrania danych potrzebnych do określenia charakterystyki badanych siłowników.
EN
The paper presents a literature review of the soft pneumatic robot actuators measurement stations. The paper presents the most frequently used power supply systems and functional elements of the stands for measuring pressure, force, angle and displacement, the programs and control systems used in measuring stations are also described. On the basis of the performed review, we determined which components are necessary to collect the data needed to determine the characteristics of the tested actuators.
Wydawca

Rocznik
Strony
123-134
Opis fizyczny
Bibliogr.42 poz., eys., tab., wykr.
Twórcy
  • Instytut Obrabiarek i Technologia Budowy Maszyn, Politechnika Łódzka
  • Zakład Sterowania Robotów, Instytut Automatyki, Politechnika Łódzka
  • Zakład Sterowania Robotów, Instytut Automatyki, Politechnika Łódzka
Bibliografia
  • 1. Haider Abidi et al. Highly dexterous 2-module soft robot for intra-organ navigation in minimally surgery. International Journal of Medical Robotics and Computer Assisted Surgery, 2018, wolumen 14, numer 1.
  • 2. Xiaojiao Chen et al. soft-actuator-based robotic joint for sale and forceful interaction with controllable impact response. IEEE Robotics and Automation Letters, 2018, wolumen 3, numer 4, s. 3505-3512.
  • 3. Yishan Chen et al. A soft-robotic gripper for ultra-high-voltage transmission line operations. 2020 IEEE 4th Conference on energy Internet and Energy system Integration: Connecting the Grids Towards a Low-Carbon High-Efficiency Energy Systems, EI2 2020, 2020, s. 788-793.
  • 4. Khaled Elegeneidy, Niels Lohse, Michael Jackson. Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors – A data-driven approach. Mechatronics, 2018, wolumen 50, s. 234-247.
  • 5. Sean Follmer et al. Jamming User Interfaces: Programmable Particle Stiffness and Sensing for Malleable and Shape-changing Devices. New York, NY, USA, Association for Computing Machinery 2012, s. 519-528.
  • 6. Shuxiang Guo et al. The LabVIEW-based control systems for the upper limb rehabilitation robot. 2017 IEEE International Conference on Mechatronics and Automation, ICMA 2017, 2017, s. 1732-1737.
  • 7. Shuxiang Guo et al. Soft actuator for hand rehabilitation. 2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015, 2015, s. 2197-2202.
  • 8. Mahdi Haghshenas-Jaryani et al. Sensorized soft robotic glove for continuous passive motion therapy. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical and Biomechatronics, 2016, wolumen 2016-July, s. 815-820.
  • 9. Rei Hisatomi et al. Development of Forceps Manipulator Using Pneumatic Soft Actuator for a Bending Joint of Forceps Tip. Proceedings of the 2019 IEEE/SICE International Symposium on System Integration, SII 2019, 2019, s. 695-700.
  • 10. Sagar Joshi, Jamie Paik. Pneumatic Supply system Parameter Optimization for Soft Actuators. Soft Robotics, 2021, wolumen 8, numer 2, s. 152-163.
  • 11. Xinquan Liang et al. A fabric-based wearable soft robotic limb. Journal of Mechanisms and Robotics, 2019, wolumen 11, numer 3.
  • 12. Amin Lotfiani et al. Design and Experiment of a Fast-Soft Pneumatic Actuator with High Output Force. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, wolumen 10984 LNAI, s. 442-452.
  • 13. Yu Miao, Wei Dong, Zhijiang Du. Design of a Soft Robot with Multiple Motion Patterns Using soft Pneumatic Actuators. IOP Conference Series: Materials Science and engineering, 2017, wolumen 269, numer 1.
  • 14. Mahmoud H. Mohamed et al. A proposed soft pneumatic actuator control based on angle estimation from data-driven model. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, woluemn 234, numer 6, s. 612-625.
  • 15. Ryosuke Nakayama et al. MorphIO: Entirely soft sensing and actuation modules for programming shape changes through tangible interaction. DIS 2019 – Proceedings of the 2019 ACM Designing Interactive Systems Conference, 2019, s. 975-986.
  • 16. Victoria Oguntosin et al. Development of a wearable assistive soft robotics device for elbow rehabilitation. IEEE International Conference on Rehabilitation Robotics, 2015, wolumen 2015-September, s. 747-752.
  • 17. Victoria Oguntosin, Slawomir J. Nasuto, Yoshikatsu Hayashi. Embedded Fuzzy Logic Controller for Positive and Negative Pressure Control in Pneumatic soft Robots. Proceedings – 2017 UKSim-AMSS 19th International Conference on Modelling and Simulation, UKSim 2017, 2018, s. 63-68.
  • 18. Kardi Bugra Ozutemiz et al. EGaIn-Metal Interfacing for Liquid Metal Circuitry and Microelectronics Integration. Advanced Materials Interfaces, 2018, wolumen 5, numer 10.
  • 19. Wookeun Park, Seongmin Seo, Joonbum Bae. A Hybrid Gripper with Soft Material and Rigid Structures. IEEE Robotics and Automation Letters, 2019, wolumen 4, numer 1, s. 65-72.
  • 20. Panagiotis Polygerinos et al. Soft robotic glove for hand rehabilitation and task specific training. Proceeding – IEEE International Conference on Robotics and Automation, 2015, wolumen 2015-June, numer June, s. 2913-2919.
  • 21. T. Ranzani et al. A bioinspired soft manipulator for minimally invasive surgery. Bioinspiration and Biomimetics, 2015, wolumen 10, numer 3.
  • 22. Lizzette J. Salmeron et al. An untethered electro-pneumatic exosuit for gait assistance of people with foot drop. Frontiers in Biomedical Devices, BIOMED – 2020 Design of Medical Devices Conference, DMD 2020, 2020.
  • 23. Rob B.N. Scharff et al. Sensing and reconstruction of 3-D deformation on pneumatic soft robots. IEEE/ASME Transactions on Mechatronics, 2021, wolumen 26, numer 4, s. 1877-1885.
  • 24. Yinyin Su et al. A High-Payload Proprioceptive Hybrid Robotic Gripper with Soft Origamic Actuators. IEEE Robotics and Automation Letters, 2020, woluemn 5, numer 2, s. 3003-3010.
  • 25. German Sumbre et al. Octopuses Use a Humen-like Strategy to Control Precise Point-to -Point Arm Movements. Current Biology, 2006, wolumen 16, numer 8, s. 767-772.
  • 26. Tao Sun et al. A soft gripper with variable stiffness inspired by pangolin scales, toothed pneumatic actuator and autonomous controller. Robotics and Computer-Integrated Manufacturing, 2020, wolumen 61.
  • 27. Aishwari Talhan, Hwangil Kim, Seokhee Jeon. Tactile Ring: Multi-Mode Finger-Worn soft Actuator for Rich Haptic Feedback. IEEE Access, 2020, wolumen 8, s. 957-966.
  • 28. Yichao Tang et al. Switchable Adhesion Actuator for Amphibious Climbing Soft Robot. Soft Robotics, 2018, wolumen 5, numer 5, s. 592-600.
  • 29. Zhi Qiang Tang et al. Model -based online learning and adaptive control for a “human-wearable soft robot” integrated system. International Journal of Robotics Research, 2021, wolumen 40, numer 1, s. 256-276.
  • 30. Thomas George Thuruthel et al. Soft robot perception using embedded soft sensors and recurrent neural networks. Science Robotics, 2019, wolumen 4, numer 26.
  • 31. Michael T. Tolley et al. An untethered jumping soft robot. IEEE International Conference on Intelligent Robots and Systems, 2014, s. 561-566.
  • 32. James Wlker at al. Soft robotics: A review of recent developments of pneumatic soft actuators. Actuators, 2020, wolumen 9, numer 1.
  • 33. Edward L. White, Jennifer C. Case, Rebecca K. Kramer. Multi-mode strain and curvature sensors for soft robotic applications. Sensors and Actuators, A: Physical, 2017, wolumen 253, s. 188-197.
  • 34. Jun Wu, Liping Wang, Liwen Guan. A study on the effect of structure parameters on the dynamic characteristics of a PRRRP parallel manipulator. Nonlinear Dynamics, 2013, wolumen 74, numer 1-2, s. 227-235.
  • 35. Mayheus S. Xavier, Andrew J. Fleming, Yuen K. Yong. Modelling and simulation of pneumatic sources for soft robotic applications. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2020, wolumen 2020-July, s. 916-821.
  • 36. Lining Yao et al. PneUI: Pneumatically actuated soft composite materials for shape changing interfaces. UIST 2013 – Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, 2013, s. 13-22.
  • 37. Hong Kai Yap et al. A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness. Proceedings – IEEE International conference on Robotics and Automation, 2015, wolumen 2015-June, numer June, s. 4967-1972.
  • 38. Meng Yu et al. A crawling soft robot driven by pneumatic foldable actuators based on Miura-ori. Actuators, 2020, wolumen 9, numer 2.
  • 39. Z. Y. Tu et al. Closed-loop control of a pneumatic soft gripper for fast and accurate response. 2020 8th International Conference on Power Electronics Systems and Applications: Future Mobility and Future Power Transfer, PESA 2020, 2020.
  • 40. Boyu Zhang et al. Worm-like soft robot for complicated tubular environments. Soft Robotics, 2019, wolumen 6, numer 3, s. 399-413.
  • 41. Haochong Zhan et al. Toward effective soft robot control via reinforcement learning. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, wolumen 10462 LNAI, s. 173-184.
  • 42. Jinhuaet al. Modeling and design of a soft pneumatic finger for hand rehabilitation. 2015 IEEE International Conference on Information and Automation, ICIA 2015 – In conjunction with 2015 IEEE International Conference on Automation and Logistics, 2015, s. 2460-2465.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f5600bbc-889b-4ef9-a86f-086424cf64cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.