Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 30, Iss. 4 | 263--268
Tytuł artykułu

Short-term response of melanoma spheroids and melanocytes to FLASH proton therapy - colorimetric and FTIR microscopy study

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Melanoma, an aggressive and highly immunogenic cancer, arises from uncontrolled melanocyte growth. FLASH radiotherapy, a breakthrough technique, delivers ultra-high radiation doses, offering the potential for improved cancer treatment while minimizing harm to healthy tissue. Material and Methods: To study the short-term response of spheroids to FLASH radiotherapy, 3D cultures of melanocytes and melanoma were used. Spheroids were irradiated using the FLASH method with the total doses of 3, 20, and 40 Gy, and conventionally with a dose of 3 Gy. After 8 days from irradiation, the measurements were taken using an imaging cytometer, FTIR and colorimetric microscopy (C-Microscopy). Results: Studies conducted on melanocytes showed that doses of 20 and 40 Gy are toxic to them and cause cell necrosis. In contrast, for melanoma, these two doses resulted in tumor growth inhibition. IR measurements revealed spectral changes in lipids, proteins, and DNA/RNA, indicating similarities between the effects of the FLASH method and conventional radiotherapy for both spheroid models (i.e., cancerous and normal). The spheroid quantitative color analysis allowed for the differentiation between different irradiated and control groups. Conclusion: Both colorimetric and infrared microscopy can be used to analyse the response of tumors to radiation.
Wydawca

Rocznik
Strony
263--268
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland, martyna.durak@uj.edu.pl
  • TotalBody JagiellonianPET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
  • TotalBody JagiellonianPET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
autor
  • Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics and Applied Computer Science, AGH University of Krakow, Kraków, Poland
  • Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
  • Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
  • Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
  • Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
  • TotalBody JagiellonianPET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics and Applied Computer Science, AGH University of Krakow, Kraków, Poland
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
  • TotalBody JagiellonianPET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
Bibliografia
  • 1. Tagliaferri L, Lancellotta V, Fionda B, et al. Immunotherapy and radiotherapy in melanoma: a multidisciplinary comprehensive review. Human Vaccines & Immunotherapeutics. 2021;18(3). https://doi.org/10.1080/21645515.2021.1903827
  • 2. Ribeiro Moura Brasil Arnaut J, dos Santos Guimarães I, Evangelista dos Santos AC, de Moraes Lino da Silva F, Machado JR, de Melo AC. Molecular landscape of Hereditary Melanoma. Critical Reviews in Oncology/Hematology. 2021;164:103425. https://doi.org/10.1016/j.critrevonc.2021.103425
  • 3. Sanlorenzo M, Vujic I, Posch C, et al. Melanoma immunotherapy. Cancer Biology & Therapy. 2014;15(6):665-674. https://doi.org/10.4161/cbt.28555
  • 4. Matuszak N, Suchorska WM, Milecki P, et al. FLASH radiotherapy: an emerging approach in radiation therapy. Rep Pract Oncol Radiother. 2022;27(2):343-351. https://doi.org/10.5603/rpor.a2022.0038
  • 5. Graeff C, Volz L, Durante M. Emerging technologies for cancer therapy using accelerated particles. Progress in Particle and Nuclear Physics. 2023;131:104046. https://doi.org/10.1016/j.ppnp.2023.104046
  • 6. Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol. 2022;19(12):791-803. https://doi.org/10.1038/s41571-022-00697-z
  • 7. Gao Y, Liu R, Chang C, et al. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J Applied Clin Med Phys. 2022;23(10). https://doi.org/10.1002/acm2.13790
  • 8. Wróbel S, Przybyło M, Stępień E. The Clinical Trial Landscape for Melanoma Therapies. JCM. 2019;8(3):368. https://doi.org/10.3390/jcm8030368
  • 9. Jasińska-Konior K, Pochylczuk K, Czajka E, et al. Proton beam irradiation inhibits the migration of melanoma cells. Amendola R, ed. PLoS ONE. 2017;12(10):e0186002. https://doi.org/10.1371/journal.pone.0186002
  • 10. Durak-Kozica M, Stępień E, Swakoń J, Moskal P. Application of an ultra-high dose rate (FLASH) proton beam for the 3D cancer cel model – a proof of concept. Bio-Algorithms and Med-Systems. 2023;19(1):31-34. https://doi.org/10.5604/01.3001.0054.1820
  • 11. Sas-Bieniarz A, Marczewska B, Bilski P, Gieszczyk W, Kłosowski M. Study of radioluminescence in LiMgPO4 doped with Tb, B and Tm. Radiation Measurements. 2020;136:106408. https://doi.org/10.1016/j.radmeas.2020.106408
  • 12. Jany BR. Quantifying colors at micrometer scale by colorimetric microscopy (C-Microscopy) approach. Micron. 2024;176:103557. https://doi.org/10.1016/j.micron.2023.103557
  • 13. Jany BR. Collected Colorimetric Microscopy (C-Microscopy) Images of Melanocytes and Melanoma 3D Spheroids Irradiated with Different Type of Proton Beam as Used in Proton Radiotherapy. Published online September 26, 2024. https://doi.org/10.5281/ZENODO.13843817
  • 14. Szczepanek M, Panek D, Przybyło M, Moskal P, Stępień EŁ. Transcriptomic data analysis of melanocytes and melanoma cell lines of LAT transporter genes for precise medicine. Bio-Algorithms and Med-Systems. 2022;18(1):144-150. https://doi.org/10.2478/bioal-2022-0086
  • 15. Karimi H, Leszczyński B, Kołodziej T, Kubicz E, Przybyło M, Stępień E. X-ray microtomography as a new approach for imaging and analysis of tumor spheroids. Micron. 2020;137:102917. https://doi.org/10.1016/j.micron.2020.102917
  • 16. Karimi H, Moskal P, Żak A, Stępień EŁ. 3D melanoma spheroid model for the development of positronium biomarkers. Sci Rep. 2023;13(1). https://doi.org/10.1038/s41598-023-34571-4
  • 17. Wemyss TA, Nixon-Hill M, Outlaw F, et al. Feasibility of smartphone colorimetry of the face as an anaemia screening tool for infants and young children in Ghana. Rather RA, ed. PLoS ONE. 2023;18(3):e0281736. https://doi.org/10.1371/journal.pone.0281736
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f504285a-5adf-4223-8450-a1efec86592d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.