Warianty tytułu
Języki publikacji
Abstrakty
This paper presents some variants of minimal point theorem together with corresponding variants of Ekeland variational principle. In the second part of this article, there is a discussion on Ekeland variational principle and minimal point theorem relative to it in uniform spaces. The aim of these series of important results is to highlight relations between them, some improvements and specific applications.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
354--379
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- University POLITEHNICA of Bucharest, Faculty of Applied Sciences, Bucuresti 060042, Romania, irina.meghea@upb.ro
- University POLITEHNICA of Bucharest, Faculty of Applied Sciences, Bucuresti 060042, Romania, criset@yahoo.com
Bibliografia
- [1] I. Ekeland, On the Variational Principle, Cahiers de mathématique de la décision, No. 7217, Université Paris, 1972.
- [2] Y. Han and X. H. Gong, Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems, Appl. Math. Lett. 28 (2014), 38–41.
- [3] A. Göpfert, C. Tammer, H. Riahi, and C. Zălinescu, Variational Methods in Partially Ordered Spaces, Springer-Verlag, New York Inc, 2003.
- [4] J. P. Dauer and O. A. Saleh, A characterization of proper minimal points as solutions of sublinear optimization problems, J. Math. Anal. Appl. 178 (1993), 227–246.
- [5] I. Meghea, Ekeland Variational Principle: With Generalizations and Variants, Old City Publishing Philadelphia, Éditions des Archives Contemporaines, Paris, 2009.
- [6] I. Meghea, On a theorem of variational calculus with applications, BSG Proc. 19 (2012), 66–81.
- [7] I. Meghea, Ekeland variational principle in differential geometry, in: D. Andrica, S. Moroianu (eds), Contemporary Geometry and Topology and Related Topics, Cluj University Press, Cluj, 2008, pp. 209–218.
- [8] I. Meghea, Solutions for mathematical physics problems involving the p-Laplacian and the p-pseudo-Laplacian for issues evolved from modeling some real phenomena, in print.
- [9] I. Meghea and C. S. Stamin, On a problem of mathematical physics equations, Bull. Transilv. Univ. Brasov Ser. III. Math. Comput. Sci. Phys. 11(60) (2018), no. 2, 169–180.
- [10] I. Meghea, Variational approaches to characterize weak solutions for some problems of mathematical physics equations, Abstr. Appl. Anal. 2016 (2016), 2071926.
- [11] I. Meghea, Two solutions for a problem of mathematical physics equations, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72 (2010), no. 3, 41–58.
- [12] I. Meghea, Weak solutions for the pseudo-Laplacian using a perturbed variational principle, BSG Proc. 17 GPB 2010 (2010), 140–150.
- [13] I. Meghea, Some results obtained in dynamical systems using a variational calculus theorem, BGS Proc. 15 GPB 2009 (2009), 91–98.
- [14] I. Meghea, On some perturbed variational principles: connexions and applications, Rev. Roumaine Math. Pures Appl. 54 (2009), no. 5–6, 493–511.
- [15] I. Meghea and V. Stanciu, Existence of the solutions of forced pendulum equation by variational methods, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 71 (2009), no. 4, 115–124.
- [16] A. Göpfert, C. Tammer, and C. Zălinescu, On the vectorial Ekeland ’s variational principle and minimal points in product spaces, Nonlinear Anal. 39 (2000), 909–922.
- [17] A. B. Németh, A nonconvex vector-minimization problem, Nonlinear Anal. 10 (1986), no. 7, 669–678.
- [18] A. Hamel, Equivalents to Ekelandas variational principle in uniform spaces, Nonlin. Anal. 62 (2005), 913–924.
- [19] A. Benbrik, A. Mbarki, S. Lahrech, and A. Ouhab, Ekelandas principle for vector-valued maps based on the characterization of uniform spaces via families of generalized quasi-metrics, Lobachevskii J. Math. 21 (2006), 33–44.
- [20] I. Meghea, On some perturbed variational principles: connexions and applications, Rev. Roumaine Math. Pures Appl. 54 (2009), no. 5–6, 493–511.
- [21] R. R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics, 2nd edition, Springer Verlag, Berlin Heidelberg, 1993.
- [22] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley and Sons, New York Chichester Brisbane Toronto Singapore, 1984.
- [23] G. Isac, The Ekeland principle and the Pareto epsilon-efficiency, Lecture Notes in Economics and Mathematical Systems, vol. 432, Springer Verlag, Berlin, 1996, pp. 148–163.
- [24] A. B. Németh, The nonconvex minimization principle in ordered regular Banach spaces, Mathematica (Cluj) 23 (1981), 43–46.
- [25] D. T. Luc, Theory of vector optimization, Lecture Notes in Economics and Mathematical Systems 319, Springer Verlag, Berlin Heidelberg New York, 1989.
- [26] J. L. Kelley, General Topology, D. Van Nostrand Company, Inc. Princeton, New Jersey Toronto London New York, 1957.
- [27] J. X. Fang, The variational principle and fixed point theorem in certain topological spaces, J. Math. Anal. Appl. 202 (1996), 398–412.
- [28] A. Hamel, Phelp’s lemma, Daneš drop theorems and Ekeland ’s principle in locally convex spaces, Proc. Amer. Math. Soc. 131 (2003), 3025–3038.
- [29] H. Brezis and F. Browder, A general ordering principle in nonlinear functional analysis, Adv. Math. 21 (1976), 355–364.
- [30] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979), 443–474.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f4e34b54-1fee-4f4e-bf61-2d6cb915dd87