Warianty tytułu
Języki publikacji
Abstrakty
In maize-soybean intercropping systems (ICS), the morphophysiological growth traits and grain yield of component crops (CC), especially of soybean suffer greatly, owing to the dominance of maize in acquiring growth resources and shading effect. Thus, a field trial was conducted entailing maize hybrids (H1=YH-1898 and H2=YH-5427) and defoliation treatments (R1=removal of top two leaves, R2=removal of top four leaves, R3=removal of top six leaves, and R4=no removal of leaves) for boosting soybean (cv. AARI-soybean) growth and yield in maize-soybean ICS. The response variables included plant height (PH), 1000 grains weight, grain yield (GY), and biological yield (BY) along with the physiological growth traits (leaf area index LAI, leaf area duration LAD, crop growth rate CGR, and net assimilation rate NAR) of CC. The H1 hybrid of maize outperformed the other hybrid by recording 8% and 9% higher PH and BY, respectively, while the H2 hybrid depicted 18% and 6% greater 1000 grain weight and GY, respectively, along with NAR. Additionally, R1 H2 exhibited the maximum LAI, LAD, and CGR at 30, 60, 90, and 110 days after sowing (DAS). Contrastingly, soybean recorded 11% higher PH in intercropping with the H1 hybrid under R4 defoliation treatment along with significantly higher 1000 grains weight (13%), GY (57%), BY (10%), and NAR (157%). Moreover, soybean exhibited the maximum physiological growth in response to the R4 H1 treatment combination. On the basis of the recorded findings, the H2 R1 treatment combination could be recommended for boosting maize yield, whereas H1 R4 or H1 R3 could be adopted to bolster the growth and productivity of soybean intercrop, but at the cost of a significant reduction in maize yield.
Czasopismo
Rocznik
Tom
Strony
34--43
Opis fizyczny
Bibliogr. 57 poz., tab.
Twórcy
autor
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad-38040, Pakistan
autor
- Department of Plant Production, Faculty of Agriculture, Mutah University, Karak, Jordan
autor
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad-38040, Pakistan
autor
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad-38040, Pakistan
autor
- Department of Chemical Engineering, Louisiana Tech University, Ruston LA 71270, United States, miqbal@latech.edu
Bibliografia
- 1. Abbas R.N., Arshad M.A., Iqbal A., Iqbal M.A., Imran M., Raza A., Chen J.T., Alyemeni M.N., Hefft D.I. 2021. Weeds spectrum, productivity and landuse efficiency in maize-gram intercropping systems under semi-arid environment. Agronomy, 11, 1615. https://doi.org/10.3390/agronomy11081615
- 2. Ahmad Z., Waraich E.A., Ahmad R., Iqbal M.A., Awan M.I. 2015. Studies on screening of maize (Zea mays L.) hybrids under drought stress conditions. Journal of Advanced Botany and Zoology, 2, 1–5.
- 3. Adham A., Ghaffar M.B.A., Ikmal A.M., Shamsudin N.A.A. 2022. Genotype × Environment interaction and stability analysis of commercial hybrid grain corn genotypes in different environments. Life, 12, 1773. https://doi.org/10.3390/life12111773
- 4. Afzal S., Akbar N., Ahmad Z., Maqsood Q., Iqbal M.A., Aslam M.R. 2015. Role of seed priming with zinc in improving the hybrid maize (Zea mays L.) yield. American-Eurasian Journal of Agricultural & Environmental Sciences, 13, 301–306.
- 5. Ali A.A., Iqbal A., Iqbal M.A. 2016. Forage maize (Zea mays L.) germination, growth and yield get triggered by different seed invigoration techniques. World Journal of Agricultural Sciences, 12(2), 97–104.
- 6. Andrade F.H, 1995. Analysis of growth and yield of maize, sunflower and soybean grown at Balcarce, Argentina. Field Crops Research, 41, 1–12.
- 7. Arshad M., Nawaz R., Ahmad S. 2020. Growth, yield and nutritional performance of sweet sorghum and legumes in sole and intercropping influenced by type of legume, nitrogen level and air quality. Polish Journal of Environmental Studies, 29(1), 533–543. https://doi.org/10.15244/pjoes/104461.
- 8. Banik P., Midya A., Sarkar B.K., Ghose S.S. 2006. Wheat and chickpea intercropping systems in an additive series experiment: Advantages and weed smothering. European Journal of Agronomy, 24, 325–332.
- 9. Bonkoungou T.O., Badu-Apraku B., Adetimirin V.O., Nanema K.R., Adejumobi II. 2024. Performance and stability analysis of extra-early maturing orange maize hybrids under drought stress and wellwatered conditions. Agronomy, 14(4), 847. https://doi.org/10.3390/agronomy14040847
- 10. Cui J., Li S., Baoyin B., Feng Y., Guo D., Zhang L., Gu Y. 2024. Maize/soybean intercropping with straw return increases crop yield by influencing the biological characteristics of soil. Microorganisms, 12(6), 1108. https://doi.org/10.3390/microorganisms12061108
- 11. Deng H., Pan X., Lan X., Wang Q., Xiao R. 2024. Rational maize–soybean strip intercropping planting system improves interspecific relationships and increases crop yield and income in the China Hexi Oasis irrigation area. Agronomy, 14(6), 1220. https://doi.org/10.3390/agronomy14061220
- 12. De Pelegrin J., Szareski J., Demari H. 2016. Yield components of hybrid based on the plant population and artificial defoliation. Australian Journal of Basic and Applied Sciences, 10, 136–142.
- 13. Echarte L., Della Maggiora A., Cerrudo D., Gonzalez V.H., Abbate P., Cerrudo A., Sadras V.O., Calviño P. 2011. Yield response to plant density of maize and sunflower intercropped with soybean. Field Crops Research, 121, 423–429.
- 14. Ekpa O., Palacios-Rojas N., Kruseman G., Fogliano V., Linnemann A.R. 2018. Sub-Saharan African maizebased foods: Technological perspectives to increase the food and nutrition security impacts of maize breeding programmes. Global Food Security,17, 48–56.
- 15. Elicin A.K., Ozturk F., Kizilgeci F., Koca Y.K., Iqbal M.A., Imran M. 2021. Soybean (Glycine max. (L.) Merrill) vegetative growth performance under chemical and organic manures nutrient management system. Fresenius Environmental Bulletin, 30(11A), 12684–12690.
- 16. Eryiğit T., Kulaz H., Tunçtürk R., Tunçtürk M. 2022. Determination of some growth parameters and chemical contents of Glycine max L. under lead stress condition. Polish Journal of Environmental Studies, 31(6), 5027–5036. https://doi.org/10.15244/pjoes/150388
- 17. Fan Y., Chen J., Cheng Y., Raza M.A., Wu X., Wang Z., Liu Q., Wang R., Wang X., Yong T., Liu W., Liu J., Du J., Yang F. 2018. Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in maize-soybean relay-strip intercropping system. PLoS ONE, 13(5), e0198159
- 18. Glier C.A.S., Duarte Junior J.B., Fachin G.M., Costa, A.C.T., Guimarães V.F., Mrozinski C.R. 2015. Defoliation percentage in two soybean cultivars at different growth stages. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(6), 567–573.
- 19. Heidari H. 2015. Effect of defoliation and ½ ear removal treatments on maize seed yield and seed germination. Biharean Biology, 11, 102–105.
- 20. Iqbal A., Abbas R.N., Al Zoubi O.M., Alasasfa M.A., Rahim N., Tarikuzzaman M., Aydemir S.K., Iqbal M.A. 2024. Harnessing the mineral fertilization regimes for bolstering biomass productivity and nutritional quality of cowpea [Vigna unguiculata (L.) Walp]. Journal of Ecological Engineering, 25(7), 340–351. https://doi.org/10.12911/22998993/188689
- 21. Iqbal M.A., Raza R.Z., Zafar M., Ali O.M., Ahmed R., Rahim J., Ijaz R., Ahmad Z., Bethune B.J. 2022. Integrated fertilizers synergistically bolster temperate soybean growth, yield, and oil content. Sustainability, 14, 2433. https://doi.org/10.3390/su14042433
- 22. Iqbal A., Iqbal M.A., Awad M.F., Nasir M., Sabagh A., Siddiqui M.H. 2021a. Spatial arrangements and seeding rates influence biomass productivity, nutritional value and economic viability of maize (Zea mays L.). Pakistan Journal of Botany, 53(3), 967–973.
- 23. Iqbal M.A., Imtiaz H., Abdul H., Bilal A. 2021b. Soybean herbage yield, nutritional value and profitability under integrated manures management. Anais da Academia Brasileira de Ciencias, 93(1), e20181384.
- 24. Iqbal M.A., Iqbal A., Abbas R.N. 2018. Spatiotemporal reconciliation to lessen losses in yield and quality of forage soybean (Glycine max L.) in soybean-sorghum intercropping systems. Bragantia, 77(2), 283–291.
- 25. Iqbal M.A., Hamid A., Ahmad A., Hussain I., Ali S., Ali A., Ahmad Z. 2019. Forage sorghum-legumes intercropping: Effect on growth, yields, nutritional quality and economic returns. Bragantia, 78(1), 82–95.
- 26. Iqbal M.A., Bethune B.J., Iqbal A., Abbas R.N., Aslam Z., Khan H.Z., Ahmad B. 2017. Agro-botanical response of forage sorghum-soybean intercropping systems under atypical spatio-temporal patterns. Pakistan Journal of Botany, 49(3), 987–994.
- 27. Iqbal M.A., Iqbal A., Ayub M., Akhtar J. 2016. Comparative study on temporal and spatial complementarity and profitability of forage sorghum-soybean intercropping systems. Custos e Agronegocio, 12(4), 2–18.
- 28. Islam M.S., Islam M.R., Hasan M.K., Hafeez A.S.M.G., Chowdhury M.K., Pramanik M.H. 2024. Salinity stress in maize: consequences, tolerance mechanisms, and management strategies. OBM Genetics, 8(2), 23. http://dx.doi.org/10.21926/obm.genet.2402232
- 29. Kachapur R.M., Patil N.L., Talekar S.C., Wali M.C., Naidu G., Salakinakop S.R., Harlapur S.I., Bhat J.S., Kuchanur P.H. 2023. Importance of mega-environments in evaluation and identification of climate resilient maize hybrids (Zea mays L.). PLoS ONE, 18, e0295518. https://doi.org/10.1371/journal.pone.0295518
- 30. Khaliq A., Iqbal M.A., Zafar M., Gulzar A. 2019. Appraising economic dimension of maize production under coherent fertilization in Azad Kashmir, Pakistan. Custos e Agronegocio, 15(2), 243–253.
- 31. Khan H.Z., Abdullah M., Abrar M., Shabir M.A., Akbar N., Iqbal A., Saleem M.F., Farhain M.F. 2018. Evaluating the role of maize-soybean intercropping in sustainable maize production. Journal of Agriculture and Basic Science, 3(4), 13–18.
- 32. Koester R.P., Skoneczka J.A., Cary T.R., Diers B.W., Ain- sworth, E.A. 2014. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. Journal of Experimental Botany, 65(12), 3311–3321.
- 33. Layek J., Ramkrushna G., Suting D., Ngangom B., Krishnappa R., De U., Das A.J. 2016. Evaluation of maize cultivars for their suitability under organic production system in north eastern hill region of India. Indian Journal of Hill farming, 29, 19–24.
- 34. Li C., Iqbal M.A. 2024. Leveraging the sugarcane CRISPR/Cas9 technique for genetic improvement of non-cultivated grasses. Frontiers in Plant Science, 15, 1369416. http://dx.doi.org/10.3389/fpls.2024.1369416
- 35. Li Y., Bao H., Xu Z., Hu S., Sun J., Wang Z., Yu X., Gao J. 2023. AMMI an GGE biplot analysis of grain yield for drought-tolerant maize hybrid selection in Inner Mongolia. Scientific Reports, 13, 18800. https://doi.org/10.1038/s41598-023-46167-z
- 36. Liu C., Ma C., Lü J., Ye Z. 2022. Yield stability analysis in maize hybrids of southwest china under genotype by environment interaction using GGE Biplot. Agronomy, 12, 1189. https://doi.org/10.3390/ agronomy12051189
- 37. Luo Y., Zhang M., Liu Y., Liu J., Li W., Chen G., Peng Y., Jin M., Wei W., Jian L., Yan J., Fernie A.R., Yan J. 2022. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytology, 234, 513–526.
- 38. Ma C., Liu C., Ye Z. 2024. Influence of genotype × environment interaction on yield stability of maize hybrids with AMMI Model and GGE Biplot. Agronomy, 14(5), 1000. https://doi.org/10.3390/agronomy14051000
- 39. Mafouasson H., Gracen V., Yeboah M., Ntsomboh-Ntsefong G., Tandzi L., Mutengwa C. 2018. Genotype-by-environment interaction and yield stability of maize single cross hybrids developed from tropical inbred lines. Agronomy, 8, 62. https://doi.org/10.3390/agronomy8050062
- 40. Maqsood Q., Abbas R.N., Iqbal M.A., Aydemir S.K., Iqbal A., El Sabagh A. 2020. Overviewing of weed management practices to reduce weed seed bank and to increase maize yield. Planta Daninha, 38, e020199716.
- 41. Matsuzaki R.A., Pinto R.J.B., Jobim C.C., Uhdre R.S., Eisele T.G., Scapim C.A. 2023. Classical and AMMI methods to select progenies, testers and topcrosses hybrids in corn. Revista Ceres, 70, e70517.
- 42. Qu J.H., Li L.J., Wang Y., Yang J.H., Zhao X.Y. 2022. Effects of rape/common vetch intercropping on biomass, soil characteristics, and microbial community diversity. Frontiers in Environmental Science, 10, 947014.
- 43. Ranković D., Todorović G., Tabaković M., Prodanović S., Boćanski J., Delić N. 2021. Direct and joint effects of genotype, defoliation and crop density on the yield of three inbred maize lines. Agriculture, 11(6), 509. https://doi.org/10.3390/agriculture11060509
- 44. Raza M.A., Feng L.Y., Werf V.D., Iqbal N., Khan I., Hassan M.J., Ansar M., Chen Y.K., Xi Z.J., Shi J.Y. 2019a. Optimum leaf defoliation: A new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. Field Crops Research, 244, 107647.
- 45. Raza M.A., Feng L.Y., Khalid M.H., Iqbal N., Meraj T.A., Hassan M.J., Ahmed S., Chen Y.K., Feng Y., Wenyu Y. 2019b. Removing top leaves increases yield and nutrient uptake in maize plants. Nutrient Cycling in Agroecosystem. https://doi.org/10.1007/s10705-020-10082-w
- 46. Raza M.A., Khalid M.H.B. Zhang X., Feng L.Y., Khan I, Hassan M.J, Ahmed M., M. Ansar M., Chen Y.K., Fan Y.F. 2019c. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Scientific Reports, 9, 4947.
- 47. Sanginga N. 2003. Role of biological nitrogen fixation in legume based cropping systems: a case study of West Africa farming systems. Plant and Soil, 252, 25–39.
- 48. Sedhom Y.S.A., Rabie H.A., Awaad H.A., Alomran M.M., ALshamrani S.M., Mansour E., Ali M.M.A. 2024. Genetic potential of newly developed maize hybrids under different water-availability conditions in an arid environment. Life, 14(4), 453. https://doi.org/10.3390/life14040453
- 49. Steel R.G.D., Torrie J.H., Dicky D.A. 1997. Principles and Procedures of Statistics, A biometrical Approach. 3rd. Ed. McGraw Hill, Inc. Book Co. N.Y. 352–358.
- 50. Su Y., Yang H., Wu Y., Gong W., Gul H., Yan Y., Yang W. 2023. Photosynthetic acclimation of shadegrown soybean seedlings to a high-light environment. Plants, 12(12), 2324. https://doi.org/10.3390/plants12122324
- 51. Turek T.L., Junior C.M., Sangoi M., Kandler L., Oliveira R., de Liz V., Hugo K.F., et al. 2023. Defoliation tolerance of soybean cultivars commercially released in different decades. Agronomía Colombiana, 41(2), 1.
- 52. Ullah A., M.A. Bhatti Z.A., Gurmani, Imran M. 2007. Studies on planting patterns of maize (Zea mays L.) facilitating legumes intercropping. Journal of Agricultural Research, 45, 113–118.
- 53. Wang G.F., Wang D.P., Zhou X.Y., Shah S., Wang L.C., Ahmed M., Sayyed R.Z., Fahad S. 2022. Effects of cotton-peanut intercropping patterns on cotton yield formation and economic benefits. Frontiers in Sustainable Food Systems, 6, 900230.
- 54. Yang F., Wang X.C., Liao D.P., Lu F.Z., Gao R.C., Liu W.G., Yong T.W., Wu X.L., Du J.B., Liu J., et al. 2015. Yield response to different planting geometries in maize–soybean relay strip intercropping systems. Agronomy Journal, 107, 296–304.
- 55. Yousaf M.I., Akhtar N., Mumtaz A., Shehzad A., Arshad M., Shoaib M., Mehboob A. 2021. Yield stability studies in indigenous and exotic maize hybrids under genotype by environment interaction. Pakistan Journal of Botany, 53, 941–948.
- 56. Zamir M.S.I., Ahmad A.H., Javeed H.M.R., Latif T. 2010. Growth and yield behavior of two maize hybrids (Zea mays L.) towards different plant spacing. Cercetari Agronomice in Moldova, 44, 2.
- 57. Zhou L., Su L., Zhao H., Zhao T., Zheng Y., Tang L. 2024. Maize/soybean intercropping improves yield stability and sustainability in red soil under different phosphate application rates in Southwest China. Agronomy, 14(6), 1222. https://doi.org/10.3390/agronomy14061222
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f4b8001f-eff5-407e-a20d-9457da4a08ac