Czasopismo
2020
|
Vol. 20, no. 2
|
140--147
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this work, a method for the measurement of one-dimensional (1D) UV radiation dose is described. It comprises a new tablet dosimeter that measures the dose using reflectance spectrophotometry. The tablet dosimeter elaborated is a solid structure with a cylindrical form and has been manufactured with polycaprolactone (PCL) doped with a representative of tetrazolium salts: 2,3,5−triphenyltetrazolium chloride (TTC). The PCL used makes the dosimeter biodegradable and therefore proecological. The TTC dopant is distributed uniformly in the whole PCL tablet, and the whole tablet changes color to red under UVC irradiation. The intensity of this color increases if the PCL–TTC tablet absorbs higher doses. The color of the tablet is stable for at least 30 days after irradiation. It is proposed that the PCL-TTC tablet be used for measurement with reflectance spectrophotometry in order to determine the reflectance of light versus the absorbed dose in a fast and easy manner. On this basis, the PCL-TTC tablet could be characterized by providing information on its dose range, which amounted to 0–2 J/cm2. Moreover, other parameters were derived, such as dose sensitivity, quasilinear dose range, and dose threshold. The morphology of the tablets studied using scanning electron microscopy revealed their high porosity, which however did not influence the reflectance measurements with the aid of the chosen instrument. UVC irradiation at a dose (15 J/cm2) much above the PCL-TTC tablets’ dose range did not alter the morphology of the tablets. The PCL-TTC tablet read with reflectance spectrophotometry is shown to be a promising and fast method for 1D UV dose measurements.
Czasopismo
Rocznik
Tom
Strony
140--147
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
- Department of Mechanical Engineering, Technical Informatics and Chemistry of Polymer Materials, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland, Tel.: +48 42 631 33 83, elzbieta.sasiadek@p.lodz.pl
autor
- Department of Mechanical Engineering, Technical Informatics and Chemistry of Polymer Materials, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
Bibliografia
- [1] Bérces, A., Fekete, A., Gáspá,r S., Gróf, P., Rettberg, P., et al. (1999). Biological UV dosimeters in the assessment of the biological hazard from environmental radiation. Journal of Photochemistry and Photobiology B, 53, 36–43.
- [2] Horneck, G. (2000). Quantification of biologically effective environmental UV irradiance. Advances in Space Research, 26, 1983–1994.
- [3] Diffey, B. L. (1998). Ultraviolet radiation and human health. Clinics in Dermatology, 16, 83–89.
- [4] Harrison, G. I., Young, A. R. (2002). Ultraviolet radiation– induced erythema in human skin. Methods, 28, 14–19.
- [5] Gilchrest, B. A., Krutmann, J. (2006). Skin aging. Springer (Germany).
- [6] Suh, K. S., Roh, H. J., Choi, S. Y., Jeon, Y. S., Doh, K. S., et al. (2007). Long–term evaluation of erythema and pigmentation induced by ultraviolet radiations of different wavelengths. Skin Research and Technology, 13, 154–161.
- [7] Rettberg, P., Horneck, G. (2000). Biologically weighted measurement of UV radiation in space and on earth with the biofilm technique. Advances in Space Research, 26, 2005–2014.
- [8] Wengraitis, S., Benedetta, D., Sliney, D. H. (1998). Intercomparison of effective erythemal irradiance measurements from two types of broad−band instruments during June 1995. Photochemistry and Photobiology, 68, 179–182.
- [9] Yeh, L. S., Lee, M. L., Sheu, J. K., Chen, M. G., Kao, C. J., et al. (2003). Visible−blind GaN p−i−n photodiodes with an Al0.12 Ga 0.88N/GaNsuperlattice structure. Solid State Electronics, 47, 873–878.
- [10] Smith, G. J. (1988). Ultraviolet radiation actinometer. U.S. Patent 4763011.
- [11] Kinsey, J. H., Harms, R. J. (1995). Biological UV−B effect monitoring instrument and method. U.S. Patent: 5401970.
- [12] Beaubien, D. J., Beaubien, A. F. (1994). Reference grade solar ultraviolet band pyranometer. U.S. Patent 5331168.
- [13] Chanishvili, A, Chilaya, G., Petriashvili, G., Barberi, R., Bartolino, R., et al. (2005). Cholesteric liquid crystal mixtures sensitive to different ranges of solar UV irradiation. Molecular Crystals and Liquid Crystals, 434, 353–366.
- [14] Chanishvili, A., Petriashvili, G., Chilaya, G., Barberi, R., De Santo, M. P., et al. (2006). UV sensors based on liquid crystals mixtures. Proceedings of SPIE Photonics Europe, 619226.
- [15] Petriashvili, G., Chanishvili, A., Chilaya, G., Matranga, M. A., De Santo, M. P., et al. (2009). Novel UV sensor based on a liquid crystalline mixture containing a photoluminescent dye. Molecular Crystals and Liquid Crystals, 500, 82–90.
- [16] Vecchia, P., Hietanen, M., Stuck, B. E., van Deventer, E., Niu, S. (2007). Protecting Workers from Ultraviolet Radiation, International Commission on Non−Ionizing Radiation Protection, ICNIRP 14/2007, (Germany).
- [17] Horneck, G. (1998). Biological monitoring of radiation exposure. Advances in Space Research, 12, 1631–1641.
- [18] Munakata, N. (1989). Genotoxic action of sunlight upon Bacillus subtilis spores: monitoring studies at Tokyo, Japan. Journal of Radiation Research, 30, 338–351.
- [19] Quintern, L. E., Furusawa, Y., Fukutsu, K., Holtschmidt, H. (1997). Characterization and application of UV detectorspore films: the sensitivity curve of a new detector system provides good similarity to the action spectrum for UV−induced erythema in human skin. Journal of Photochemistry and Photobiology, 37, 158–166.
- [20] Kimlin, M. G., Parisi, A. V., Wong, J. C. F. (1998). Quantification of the personal solar UV exposure of outdoor workers, indoor workers and adolescents at two locations in southeast Queensland. Photodermatology, Photoimmunology & Photomedicine, 14, 7–11.
- [21] Diffey, B. L. (2002). Sources and measurement of ultraviolet radiation. Methods, 28, 4–13.
- [22] Mills, A., McFarlane, M., Schneider, S. (2006). A viologen– based UV indicator and dosimeter. Analytical and Bioanalytical Chemistry, 386, 299–305.
- [23] Chen, C. C., Lu, C. S., Chung, Y. C., Jan, J. L. (2007). UV light induced photodegradation of malachite green on TiO2 nanoparticles. Journal of Hazardous Materials, 141, 520–528.
- [24] Pérez–Estrada, L. A., Agüera, A., Hernando, M. D., Malato, S., Fernández–Alba, A. R. (2008). Photodegradation of malachite green under natural sunlight irradiation: kinetic and toxicity of the transformation products. Chemosphere, 70, 2068–2075.
- [25] Ebraheem, S., Abdel–Fattah, A. A., Said, F. I., Ali, Z. I. (2000). Polymer–based triphenyl tetrazolium chloride films for ultraviolet radiation monitoring. Radiation Physics and Chemistry, 57, 195–202.
- [26] Mills, A., Grosshans, P., McFarlane, M. (2009). UV dosimeters based on neotetrazolium chloride. Journal of Photochemistry and Photobiology A: Chemistry, 201, 136–141.
- [27] Butson, M. J., Yu, P. K. N., Cheung, T., Metcalfe, P. (2003). Radiochromic film for medical radiation dosimetry. Materials Science and Engineering R: Reports, 41, 61–120.
- [28] McLaughlin, W. L., Desrosiers, M. F. (1995). Dosimetry system for radiation processing. Radiation Physics and Chemistry, 46, 1163–1174.
- [29] Butson, M., Yu, P. K. N., Metcalfe, P. (1998). Measurement of off axis and peripheral skin dose using radiochromic film. Physics in Medicine & Biology, 43, 2647–2650.
- [30] Woodruff, M. A., Hutmacher, D. W. (2010). The return of a forgotten polymer-Polycaprolactone in the 21st century. Progress in Polymer Science, 35, 1217–1256.
- [31] Kozicki, M., Sąsiadek, E. (2011a). Textile UV detector with 2,3,5–triphenyltetrazolium chloride as an active compound. Radiation Measurements, 46, 510–526.
- [32] Kozicki, M., Sąsiadek, E. (2011b). UV dosimeter based on polyamide woven fabric and nitro blue tetrazolium chloride as an active compound. Radiation Measurements, 46, 1123–1137.
- [33] Sąsiadek, E., Andrzejczak, R., Kozicki, M. (2012). The importance of fabric structure in the construction of 2D textile radiation dosimeters. Radiation Measurements, 47, 622–627.
- [34] Kozicki, M., Sąsiadek, E. (2013). Scanning of flat textile-based radiation dosimeters: Influence of parameters on the quality of results. Radiation Measurements, 58, 87–93.
- [35] Kozicki, M., Sąsiadek, E. (2012). Polyamide woven fabrics with 2,3,5-triphenyltetrazoluim chloride or nitro blue tetrazolium chloride as 2D ionizing radiation dosimeters. Radiation Measurements, 47, 614–621.
- [36] Kozicki, M., Sąsiadek, E., Karbownik, I., Maniukiewicz, W. (2015). Doped polyacrylonitrile fibres as UV radiation sensors. Sensors and Actuators B: Chemical, 213, 234–243.
- [37] Kovács, A., Wojnárovits, L., El-Assy, N. B., Afeefy, H. Y., Al-Sheikhly, M., et al. () Alcohol solutions of triphenyltetrazolium chloride as high-dose radiochromic dosimeters. Radiation Physics and Chemistry, 46, 1217–1225.
- [38] Kovács, A., Wojnárovits, L., McLaughlin, W. L., Ebrahim Eid, S. E., Miller, A. (1996). Radiation-chemical reaction of 2,3,5-triphenyl-tetrazolium chloride in liquid and solid state. Radiation Physics and Chemistry, 47, 483–486.
- [39] Pikaev, A. K., Kriminskaya, Z. K. (1998). Use of tetrazolium salts in dosimetry of ionizing radiation. Radiation Physics and Chemistry, 52, 555–561.
- [40] Bordes, C., Fréville, V., Ruffin, E., Marote, P., Gauvrit, J. Y., et al. (2010). Determination of poly(ε -caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process. International Journal of Pharmaceutics, 383, 236–243.
- [41] Laszlo, O., Filipczak, K., Jaegermann, Z., Czigany, T., Borbas, L., et al. (2006). Synthesis, structural and mechanical properties of porous polymeric scaffolds for bone tissue regeneration based on neat poly(ε− caprolactone) and its composites with calcium carbonate. Polymers for Advanced Technologies, 17, 889–897.
- [42] Ebraheem, S., Beshir, W. B., Kovács, A., Wojnárovits, L., McLaughlin, W. L. (1999). A new spectrophotometric readout for the alanine triphenyl tetrazolium chloride system for high-dose dosimetry. Radiation Physics and Chemistry, 55, 785–787.
- [43] Kovács, A., Baranyai, M., Wojnárovits, L., Moussa, A., Othman, I., et al. (1999). Aqueous-ethanol nitro blue tetrazolium solutions for high dose dosimetry. Radiation Physics and Chemistry, 55, 799–803.
- [44] Bei, J., He, W., Hu, X., Wang, S. (2000). Photodegradation behavior and mechanism of block copoly(caprolactoneethylene glycol). Polymer Degradation and Stability, 67, 375–380.
- [45] Martins-Franchetti, S. M., Campos, A., Egerton, T. A., White, J. R. (2008). Structural and morphological changes in poly(caprolactone)/poly(vinyl chloride) blends caused by UV irradiation. Journal of Material Science, 43, 1063–1069.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f4b5eff4-28b2-47d5-be7e-c799bf31d9a8