Warianty tytułu
Języki publikacji
Abstrakty
The one-dimensional φ 4 Model generalizes a harmonic chain with nearest-neighbor Hooke’s-Law interactions by adding quartic potentials tethering each particle to its lattice site. In their studies of this model Kenichiro Aoki and Dimitri Kusnezov emphasized its most interesting feature: because the quartic tethers act to scatter long-wavelength phonons, φ 4 chains exhibit Fourier heat conduction. In his recent Snook-Prize work Aoki also showed that the model can exhibit chaos on the threedimensional energy surface describing a two-body two-spring chain. That surface can include at least two distinct chaotic seas. Aoki pointed out that the model typically exhibits different kinetic temperatures for the two bodies. Evidently few-body φ 4 problems merit more investigation. Accordingly, the 2019 Prizes honoring Ian Snook (1945–2013) [five hundred United States dollars cash from the Hoovers and an additional $500 cash from the Institute of Bioorganic Chemistry of the Polish Academy of Sciences and the Poznan Supercomputing and Networking Center] will be awarded to the author(s) of the most interesting work analyzing and discussing few-body φ 4 models from the standpoints of dynamical systems theory and macroscopic thermodynamics, taking into account the model’s ability to maintain a steady-state kinetic temperature gradient as well as at least two coexisting chaotic seas in the presence of deterministic chaos.
Słowa kluczowe
Rocznik
Tom
Strony
5
Opis fizyczny
fot.
Twórcy
autor
- Ruby Valley Research Institute Highway Contract 60, Box 601, Ruby Valley, Nevada 89833, USA , hooverwilliam@yahoo.com
autor
- Ruby Valley Research Institute Highway Contract 60, Box 601, Ruby Valley, Nevada 89833, USA
Bibliografia
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f4b38a91-aac7-4ccb-a783-e09c10fb7912