Warianty tytułu
Języki publikacji
Abstrakty
Polymer composites have a number of valuable properties that enable them to find a special place in the field of civil engineering. In response to current trends related to sustainable construction and the circular economy, effective ways of modifying these composites with recycled materials are being sought. This approach, in turn, makes these materials require systematic monitoring of their durability, especially in the context of variable operating temperatures. The article describes the results of the testing of concrete-like epoxy composites modified with waste materials, both within the resin matrix – by glycolysate obtained on the basis of propylene glycol and poly(ethylene terephthalate) derived from waste beverage bottles, and aggregates - polyethylene agglomerate from waste bags and waste rubber granules from car tires. After seven days of maturation in laboratory conditions, the mortar samples were exposed in a climatic chamber to cyclic (50 and 100 cycles) temperature changes ranging from +20 °C to +100 °C and from –10 °C to +10 °C. Then, strength tests, changes in the mass and adhesion to cement concrete were carried out. The proposed material solution, combined with the conducted set of tests, brings scientific novelty to the field of building composites. The test results confirm the beneficial effect of modification, especially when it took place in the resin matrix. Positive temperature cycles resulted in post-hardening of the samples and thus an increase in the strength characteristics. The impact of negative temperatures was more unfavorable for the material; after 100 cycles, in most cases, a slight decrease in the mechanical parameters was noted, while the adhesion remained at a very good level, twice as high as that required for repair systems.
Czasopismo
Rocznik
Tom
Strony
155--163
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Rzeszow University of Technology, Faculty of Civil and Environmental Engineering and Architecture, ul. Poznańska 2, 35-084 Rzeszow, Poland
autor
- Universidade Federal de Ouro Preto, Departamento de Engenharia Civil, Campus Morro do Cruzeiro, CEP: 35.400.000, Ouro Preto – Minas Gerais, Brasil
- Universidade Federal de Ouro Preto, Departamento de Engenharia Civil, Campus Morro do Cruzeiro, CEP: 35.400.000, Ouro Preto – Minas Gerais, Brasil, bdebska@prz.edu.pl
Bibliografia
- 1. Sokołowska J.J., Technological properties of polymer concrete containing vinyl-ester resin waste mineral powder, Journal of Building Chemistry 2016, 1, 84-91.
- 2. Jin N.J., Seung I., Choi Y.S., Yeon J., Prediction of earlyage compressive strength of epoxy resin concrete using the maturity method, Construction and Building Materials 2017, 152, 990-998.
- 3. Aliha M.R.M., Imani D.M., Salehi S.M., Shojaee M., Abedi M., Mixture optimization of epoxy base concrete for achieving highest fracture toughness and fracture energy values using Taguchi method, Composites Communications 2022, 32, 101150, DOI: 10.1016/j.coco.2022.101150.
- 4. Dębska B., Wojtaszek K., Altoé Caetano M., Brigolini Silva G.J., Sustainable polyester composites containing waste glass for building applications, Sustainability 2024, 16(2), 719, DOI: 10.3390/su16020719.
- 5. Dębska B., Modification of Polymer Composites by Polyethylene Terephthalate Waste, In: Poly(Ethylene Terephthalate)
- Based Blends, Composites and Nanocomposites, eds. P.M. Visakh, M. Liang, Elsevier, Amsterdam 2015, 195-212, DOI: 10.1016/B978-0-323-31306-3.00010-5.
- 6. Czarnecki L., Polymer concretes, Cement Wapno Beton 2010, 15(2) 63-85.
- 7. Łukowski P., Sokołowska J.J., Adamczewski G., Smarż-Kępniak M., Odporność chemiczna kompozytów polimerowych zawierających odpadowy pył perlitowy, Przegląd Budowlany 2014, 5, 46-48.
- 8. Roh I-T., Jung K-Ch., Chang S-H., Cho Y-H., Characterization of compliant polymer concretes for rapid repair of runways, Construction and Building Materials 2015, 78, 77-84, DOI: 10.1016/j.conbuildmat.2014.12.121.
- 9. Rajaram A.N., Boay Ch. G., Srikanth N., Effect of curing on the hygrothermal behaviour of epoxy and its carbon composite
- materials, Composites Communications 2020, 22, 100507, DOI: 10.1016/j.coco.2020.100507.
- 10. Park J.K., Kim M.O., The effect of different exposure conditions on the pull-off strength of various epoxy resins, Journal of Building Engineering 2021, 38, 102223, DOI:10.1016/j.jobe.2021.102223.
- 11. Shi J., Wang J., Yu Z., Li J., Ren T., Tao Y., Comprehensive performance study of materials after innovative utilizing epoxy resin curing of loess and river sand: Mechanical properties, durability and microstructure, Construction and Building Materials 2024, 415, 134184, DOI: 10.1016/ j.conbuildmat.2023.134184.
- 12. Haurie L., Lacasta A.M., Ciudad A., Realinho V., Velasco J.I., Addition of flame retardents in epoxy mortars: Thermal and mechanical characterization, Construction and Building Materials 2013, 42, 266-270, DOI: 10.1016/j.conbuildmat. 2012.12.012.
- 13. Elalaoui O., Ghorbel E., Mignot V., Ben O.M., Mechanical and physical properties of epoxy polymer concrete after exposure
- to temperatures up to 250°C, Construction and Building Materials 2012, 27(1), 415-424, DOI: 10.1016/ j.conbuildmat.2011.07.027.
- 14. Jin N.J., Yeon J., Seung I., Yeon K-S., Effects of curing temperature and hardener type on the mechanical properties of bisphenol F-type epoxy resin concrete, Construction and Building Materials 2017, 156, 933-943, DOI: 10.1016/ j.conbuildmat.2017.09.053.
- 15. Elalaoui O., Ghorbel E., Ouezdou M.B., Influence of flame retardant addition on the durability of epoxy based polymer
- concrete after exposition to elevated temperature, Construction and Building Materials 192, 2018, 233-239, DOI: 10.1016/j.conbuildmat.2018.10.132.
- 16. Daneshvar D., Deix K., Robisson A., Effect of casting and curing temperature on the interfacial bond strength of epoxy bonded concretes, Construction and Building Materials 2021, 307, 124328, DOI: 10.1016/j.conbuildmat.2021. 124328.
- 17. Czaderski Ch., Martinelli E., Michels J., Motavalli M., Effect of curing conditions on strength development in an epoxy resin for structural strengthening, Composites Part B: Engineering 2012, 43(2), 398-410, DOI: 10.1016/j.compositesb:2011.07.006.
- 18. Carbas R.J.C., Marques E.A.S., da Silva L.F.M., Lopes A.M., Effect of cure temperature on the glass transition temperature and mechanical properties of epoxy adhesives, Journal of Adhesion 2014, 90, 104119, DOI: 10.1080/00218464.2013.779559.
- 19. Moussa O., Vassilopoulos A.P., De Castro J., Keller T., Early-age tensile properties of structural epoxy adhesives subjected to low-temperature curing, International Journal of Adhesion and Adhesives 2012, 35, 9-16, DOI: 10.1016/ j.ijadhadh.2012.01.023.
- 20. Czarnecki L., Betony żywiczne, Arkady, Warszawa 1982.
- 21. Ribeiro M.C.S., Nóvoa P.R., Ferreira A.J.M., Marques A.T., Flexural performance of poliester and epoxy polymer mortars
- under severe thermal conditions, Cement and Concrete Composites 2004, 26, 803-809, DOI: 10.1016/S0958-9465(03)00162-8.
- 22. Ribeiro M.C.S., Ferreira A.J.M., Marques A.T., Assessment of thermal degradation on polymer mortars, Journal of Polymer Engineering 2003, 23(5), 299-314, DOI: 10.1515/POLYENG.2003.23.5.299.
- 23. Sadowski Ł., Kampa Ł., Chowaniec A., Królicka A., Żak A., Abdoulpour H., Vantadori S., Enhanced adhesive performance of epoxy resin coating by a novel bonding agent, Construction and Building Materials 2021, 301, 124078, DOI: 10.1016/j.conbuildmat.2021.124078.
- 24. Chowaniec A., Sadowski Ł., Żak A., The chemical and microstructural analysis of the adhesive properties of epoxy resin coatings modified using waste glass powder, Applied Surface Science 2020, 504, 144373, DOI: 10.1016/ j.apsusc.2019.144373.
- 25. Smoleń J., The use of recycled carbon fibers (rCF) in production of polymer concrete to improve mechanical properties, Composites Theory and Practice 2023, 23(3), 167-172.
- 26. Smoleń J., Orzechowska M., Tomaszewska K., Stępień K.,Peryt A., Pawlik T., Polymer concrete filled with milled car windshield and GFRP waste, Composites Theory and Practice 2023, 23(2), 84-88.
- 27. Aliha M.R.M., Kouchaki H.G., Mohammadi M.H., Haghighatpour P.J., Choupani N., Asadi P., Akbari M.,Darvish M.G., Sadowski T., Fracture toughness determina tion for epoxy-based polymer concrete mixtures: Applicability of different rectangular beam and circular disc specimens, Composites Part C: Open Access 2024, 14, 100446, DOI: 10.1016/j.jcomc.2024.100446.
- 28. Cosnita M., Cazan C., Pop M.A., Cristea D., Aging resistance under short time ultraviolet (UV) radiations of polymer wood composites entirely based on wastes, Environmental & Technology Innovation 2023, 31, 103208, DOI: 10.1016/j.eti.2023.103208.
- 29. Dębska B., Altoé Caetano M., Brigolini Silva G.J., Study of the influence of accelerated aging on the physical and mechanical properties of polymer composites containing rubber, polyethylene and poly(ethylene terephthalate) waste, Journal of Cleaner Production 2024, 444, 141273, DOI:10.1016/j.jclepro.2024.141273.
- 30. Martínez-López M., Martínez-Barrera G., del Coz-Díaz J.J., Martínez-Martínez J.E., Gencel O., Ribeiro M.C.S., Varela--Guerrero, V., Polymer waste materials as fillers in polymer mortars: experimental and finite elements simulation, Case Studies in Construction Materials 2018, 9, e00178, DOI:10.1016/j.cscm.2018.e00178.
- 31. PN-EN 1542: 2000 Wyroby i systemy do ochrony i napraw konstrukcji betonowych – Metody badań – Pomiar przyczepności przez odrywanie.
- 32. Szabelski J., Domińczuk J., Kuczmaszewski J., Wpływ ciepła na właściwości połączeń klejowych, Wydawnictwo Politechniki Lubelskiej, Lublin 2019.
- 33. Korol J., Skotniczy G., Kozioł M., Chmielnicka E., Kowalik M., Zastosowanie polimerobetonów zawierajacych przemysłowe denne popioły fluidalne w płytach ostojowych słupów energetycznych, Cement Wapno Beton 2023, 28(5), 284-300, DOI: 10.32047/CWB.2023.28.5.1.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f4a17d94-0eae-45fa-b5bf-526be8157ba8