Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we discuss how to partially determine the Fourier transform F(z) = 1 ∫ −1 f(t)eizt dt, z ∈ ℂ, given the data |F(z)| or arg F(z) for z ∈ ℝ. Initially, we assume [−1, 1] to be the convex hull of the suport of the signal f . We start with reviewing the computation of the indicator function and indicator diagram of a finite-typed complex-valued entire function, and then connect to the spectral invariant of F(z). Then we focus to derive the unimodular part of the entire function up to certain non-uniqueness.We elaborate on the translation of the signal including the non-uniqueness associates of the Fourier transform.We show that the phase retrieval and magnitude retrieval are conjugate problems in the scattering theory of waves.
Czasopismo
Rocznik
Tom
Strony
259--268
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- General Education Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, mr.lunghuichen@gmail.com
Bibliografia
- [1] E. J. Akutowicz, On the determination of the phase of a Fourier integral. I, Trans. Amer. Math. Soc. 83 (1956), 179-192.
- [2] E. J. Akutowicz, On the determination of the phase of a Fourier integral. II, Trans. Amer. Math. Soc. 84 (1957), 237-238.
- [3] R. Barakat and G. Newsam, Necessary conditions for a unique solution to two-dimensional phase recovery, J. Math. Phys. 25 (1984), no. 11, 3190-3193.
- [4] R. P. Boas, Jr., Entire Functions, Academic Press, New York, 1954.
- [5] M. L. Cartwright, Integral Functions, Cambridge Tracts Math. Math. Phys. 44, Cambridge University, Cambridge, 1956.
- [6] T. R. Crimmins and J. R. Fienup, Uniqueness of phase retrieval for functions with sufficiently disconnected support, J. Opt. Soc. Amer. 73 (1983), no. 2, 218-221.
- [7] V. Elser, Solution of the crystallographic phase problem by iterated projections, Acta Crystallogr. A 59 (2003), 201-209.
- [8] M. A. Fiddy and A. H. Greenaway, Phase retrieval using zero information, Optics Commun. 29 (1979), 270-272.
- [9] J. R. Fienup, Reconstruction of an object from the modulus of its fourier transform, Optics Letters 3 (1978), 27-29.
- [10] E. M. Hofstetter, Construction of time-limited functions with specified autocorrelation functions, IEEE Trans. Inform. Theory 10 (1964), 119-126.
- [11] N. E. Hurt, Phase Retrieval and Zero Crossings. Mathematical Methods in Image Reconstruction, Math. Appl. 52, Kluwer Academic, Dordrecht, 1989.
- [12] P. Jaming, Phase retrieval techniques for radar ambiguity problems, J. Fourier Anal. Appl. 5 (1999), no. 4, 309-329.
- [13] P. Jaming, Uniqueness results in an extension of Pauli’s phase retrieval problem, Appl. Comput. Harmon. Anal. 37 (2014), no. 3, 413-441.
- [14] P. Jaming, K. Kellay and R. Perez, III, Phase retrieval for wide band signals, J. Fourier Anal. Appl. 26 (2020), no. 4, Paper No. 54.
- [15] P. Jaming and S. Pérez-Esteva, The phase retrieval problem for solutions of the Helmholtz equation, Inverse Problems 33 (2017), no. 10, Article ID 105007.
- [16] M. V. Klibanov, P. E. Sacks and A. V. Tikhonravov, The phase retrieval problem, Inverse Problems 11 (1995), no. 1, 1-28.
- [17] P. Koosis, The Logarithmic Integral. I, Cambridge University, Cambridge, 1997.
- [18] B. J. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Monogr. 5, American Mathematical Society, Providence, 1972.
- [19] B. Y. Levin, Lectures on Entire Functions, Transl. Math. Monogr. 150, American Mathematical Society, Providence, 1996.
- [20] J. N. McDonald, Phase retrieval and magnitude retrieval of entire functions, J. Fourier Anal. Appl. 10 (2004), no. 3, 259-267.
- [21] J. Miao, P. Charalambous, J. Kirz and D. Sayre, Extending the methodology of X-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens, Nature 400 (1999), 342-344.
- [22] J. Rosenblatt, Phase retrieval, Comm. Math. Phys. 95 (1984), no. 3, 317-343.
- [23] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed., Wiley, New York, 2007.
- [24] D. Sayre, Some implication of a theorem due to Shannon, Acta Crystallogr. 5 (1952), 843-843.
- [25] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao and M. Negev, Phase retrieval with application to optical imaging, IEEE Signal Process. Mag. 32 (2015), 87-109.
- [26] J. Spence, U. Weierstall and M. Howells, Coherence and sampling requirements for diffractive imaging, Ultramicroscopy 101 (2004), 149-152.
- [27] A. Walther, The question of phase retrieval in optics, Optica Acta 10 (1963), 41-49.
- [28] J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang and L. A. Nagahara, Atomic resolution imaging of a carbon nanotube from diffraction intensities, Science 300 (2003), 1419-1421.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f481fe32-8fe5-48fe-ab0e-69e9a2bb70cc