Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 21, no. 2 | 188--209
Tytuł artykułu

Explosively Formed Penetrators Inflight Heating Compared to Hemispherical Copper Shaped Charge Jet

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Performance of shaped charges jet and explosive formed penetrators (EFP) can be tailored based on initial liner design and geometry. In addition, the jet temperature gradients during liner collapse and jet stretching mechanisms are different in both cases; the EFP and the traditional jet due to the different strain rates caused by the velocity gradient. In the current research work, oxygen free high conductivity copper (OFHC) was employed with two different liner geoemtries including hemispherical and dish-shaped liners of 2 mm thickness and 33 mm charge diameter. Autodyn numerical modeling was employed to study the impact of liner geometry on the characteristics of produced jet. Moreover, the jet heating mechanisms have been investigated numerically; the ratio between the collapse heating temperature to the plastic deformation temperature was found to be 1.61 and 0.43 for the dish-shaped and hemispherical jet respectively. This finding means that the jet heating due to stretching is not predominant one in both EFP and jet as it has already been confirmed in the papers published so far. Furthermore, EFP and jet penetration performances were assessed by the static firing against 4340 steel targets; while dish-shaped demonstrated shallow but enhanced wide crater at large standoff distance (D), i.e. 30D. Hemispherical jet has achieved large penetration depth with small crater diameter at small standoff distance, i.e. 4D.
Wydawca

Rocznik
Strony
188--209
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Engineering and Technology Research Center, Military Technical College, Cairo, Egypt
  • School of Chemical Engineering, Military Technical College, Cairo, Egypt
  • School of Chemical Engineering, Military Technical College, Cairo, Egypt
  • School of Chemical Engineering, Military Technical College, Cairo, Egypt
Bibliografia
  • [1] Held, M. Liners for Shaped Charges. J. Battlefield Technol. 2001, 4(3): 1-6.
  • [2] Pai, V.V.; Kuz’min, G.J.C. Experimental Determination of Temperature of a Metal Jet. Explosion Shock Waves 1994, 30(3): 346-349.
  • [3] Pai, V.V.; Titov, V.M.; Luk’yanov, Y.L.; Zubashevski, K.M. Temperature Measurement of the Shaped-Charge Jet from a Conical Liner. Combust. Explos. Shock Waves 2020, 56(3): 361-364l https://doi.org/10.1134/S0010508220030132.
  • [4] Von Holle, W.G.; Trimble, J.J. Temperature Measurement of Shocked Copper Plates and Shaped Charge Jets by Two Color IR Radiometry. J. Appl. Phys. 1976, 47(6): 2391-2394; https://doi.org/10.1063/1.323028.
  • [5] Racah, E. Shaped Charge Jet Heating. Propellants Explos. Pyrotech. 1988, 13(6): 178-182; https://doi.org/10.1002/prep.19880130605.
  • [6] Elshenawy, T.A.E.; Elbasuney, S. Hemispherical Zirconium Liner for Advanced Shaped Charge with Enhanced Behind Armour Effect. Cent. Eur. J. Energ. Mater. 2021, 18(3): 293-321; https://doi.org/10.22211/cejem/140074.
  • [7] Whelan, A.J.; Furnisss, D.R.; Townsley, R.G. Experimental and Simulated (Analytical and Numerical) Elliptical-form Shaped Charges. Proc. 20th Int. Symp. Ballistics, Florida, 2002.
  • [8] Agu, H. The Effects of 3D Printed Material Properties on Shaped Charge Liner Performance. Cranfield University, 2019.
  • [9] Babkin, A.; Bondarenko, P.A.; Fedorov, S.V.; Ladov, S.V.; Kolpakov, V.I.; Andreev, S.G. Limits of Increasing the Penetration of Shaped‐Charge Jets by Pulsed Thermal Action on Shaped‐Charge Liners. Combust. Explos. Shock Waves 2001, 37: 727-733; https://doi.org/10.1023/A:1012948702419.
  • [10] Sable, P.; Helminiak, N.S.; Gullerund, A.; Harstad, E.; Hollenshead, J.; Hertel, E.S. Characterizing In-Flight Temperature of Shaped Charge Penetrators in CTH. Procedia Eng. 2017, 204: 375-382; https://doi.org/10.1016/j.proeng.2017.09.782.
  • [11] Flis, W.J. On Temperatures in Shaped-Charge Jet Penetration. Proc. 30th Int. Symp. Ballistics, 2018.
  • [12] Schwartz, A.; Kumar, M.; Lassila, D. Analysis of Intergranular Impurity Concentration and the Effects on the Ductility of Copper-Shaped Charge Jets. Metall. Mater. Trans. A 2004, 35(9): 2567-2573; https://doi.org/10.1007/s11661-004-0203-8.
  • [13] Kato, H.; Kaho, N.; Takizuka, M.; Hamashima, H.; Itoh, S. Research on the JWL Parameters of Several Kinds of Explosives. Mater. Sci. Forum 2004, 465-466: 271-276; https://doi.org/10.4028/www.scientific.net/MSF.465-466.271.
  • [14] Pugh, E.M.; Eichelberger, R.J.; Rostoker, N. Theory of Jet Formation by Charges with Lined Conical Cavities. J. Appl. Phys. 1952, 23(5): 532-536; https://doi.org/10.1063/1.1702246.
  • [15] Team, A. Autodyn Theory Manual. Century Dynamics: CA, 1997.
  • [16] Elshenawy, T.; Li, Q.M. Influences of Target Strength and Confinement on the Penetration Depth of an Oil Well Perforator. Int. J. Impact Eng. 2013, 54: 130-137; https://doi.org/10.1016/j.ijimpeng.2012.10.010.
  • [17] Tarver, C.M.; Tao, W.C.; Lee, C.G. Sideways Plate Push Test for Detonating Solid Explosives. Propellants Explos. Pyrotech. 1996, 21(5): 238-246; https://doi.org/10.1002/prep.19960210506.
  • [18] Lan, I., Jung, S.C.; Chen, C.Y.; Niu, Y.M.; Shiuan, J.H. An Improved Simple Method of Deducing JWL Parameters from Cylinder Expansion Test. Propellants Explos. Pyrotech. 1993, 18(1): 18-24; https://doi.org/10.1002/prep.19930180104.
  • [19] Elek, P.M.; Džingalašević, V.V.; Jaramaz, S.S.; Micković, D.M. Determination of Detonation Products Equation of State from Cylinder Test: Analytical Model and Numerical Analysis. Therm. Sci. 2015, 19(1): 35-48; https://doi.org/10.2298/TSCI121029138E.
  • [20] AUTODYN Compendium of Papers (Dnamics, C.; Ed.), USA, 1985.
  • [21] Mulligan, P.; Baird, J.; Hoffman, J. The Effects of the Flyer Plate’s Radius of Curvature on the Performance of an Explosively Formed Projectile. Proc. AIP Conference Proceedings, 2012, 1426(1): 1023-1026; https://doi.org/10.1063/1.3686452.
  • [22] Walters, P.; Zukas, J. Fundamentals of Shaped Charges. John Wiley & Sons, New York, US, 1989; ISBN: 0-471-62172-2.
  • [23] Held, M. Behind Armour Effects at Shaped Charge Attacks. Proc. 24th Int. Symp. Ballistics, 2008; ISBN: 9781932078930.
  • [24] Elshenawy, T.; Li, Q.M. Breakup Time of Zirconium Shaped Charge Jet. Propellants Explos. Pyrotech. 2013, 38(5): 703-708; https://doi.org/10.1002/prep.201200191.
  • [25] Aseltine, C.L. Analytical Predictions of the Effect of Warhead Asymmetries on Shaped Charge Jets. Report ADA083437, DTIC, US, 1980.
  • [26] Elshenawy, T. Determination of the Velocity Difference between Jet Fragments for a Range of Copper Liners with Different Small Grain Sizes. Propellants Explos. Pyrotech. 2015, 41(1): 69-75; https://doi.org/10.1002/prep.201500095.
  • [27] Chou, P.C. Breakup of Shaped Charge Jet. Proc. 2nd Int. Symp. Ballistics, Daytona Beach, US-FL, 1976.
  • [28] Petit, J.; Jeanclaude, V.; Fressengeas, C. Breakup of Copper Shaped-Charge Jets: Experiment, Numerical Simulations, and Analytical Modeling. J. Appl. Phys. 2005, 98(12): paper 123521; https://doi.org/10.1063/1.2141647.
  • [29] Curtis, J.P. A Break-up Model for Shaped Charge Jets. Proc. 16th Int. Symp. Ballistics, San Francisco, 1996
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f4761a19-e44e-4f4c-9fee-48cfc43c1fc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.