Warianty tytułu
Języki publikacji
Abstrakty
The research shows how to use swarming algorithms to rebuild the heat transfer coefficient, especially in regard to the continuous border condition. The authors utilized their application software to do numerical computations, employing classical variants of swarm algorithms. The numerical calculations employed a functional determining error to assess the accuracy of the estimated result. The functional minimization was conducted with the swarm algorithms (especially ABC and ACO). The geometry analyzed in this study consisted of a square shape referred to as the cast, enclosed within another square shape known as the casting mold. These two squares were separated by a layer facilitating heat conduction, characterized by the coefficient κ. The coefficient of the thermally conductive layer was recalibrated utilizing swarm methods within the range of 900 - 1500 [W/m^2K] and subsequently compared to a predetermined reference value. A finite element mesh consisting of 576 nodes was used for the calculations. The study involved simulations with populations of 5, 10, 15, and 20 individuals. Furthermore, each scenario also took into account noise of 0%, 2%, and 5% of the reference values. Results make evident the reconstructed value of the κ coefficient, cooling curves, and temperatures for the ABC and ACO algorithms are physically correct. The consequences indicate a notable level of satisfaction and strong concurrence with the anticipated of the κ parameter values. The results from the numerical simulations demonstrate considerable promise for applying artificial intelligence algorithms in optimizing production processes, analyzing data, and facilitating data-driven decision-making.
Rocznik
Tom
Strony
349--364
Opis fizyczny
Bibliogr. 35 poz., fig., tab.
Twórcy
autor
- Czestochowa University of Technology, elzbieta.gawronska@icis.pcz.pl
autor
- Czestochowa University of Technology, aria.zych@icis.pcz.pl
autor
- Czestochowa University of Technology, robert.dyja@icis.pcz.pl
autor
- Segment X, Inc. 1821 Kumakani Pl Honolulu, HI 9682, United States, michal@segmentx.ai
Bibliografia
- 1. Miniati, F., Gregori, G, Learning transport processes with machine intelligence. Scientific Reports 2022, 12, https://doi.org/10.1038/s41598-022-15416-y
- 2. Rutkowski, L., Methods, techniques of artificial intelligence; Informatics – Applications, 2009 (in Polish).
- 3. Słota, D., Solving inverse problems of solidification with the use of genetic algorithm, Publishing house of the Silesian University of Technology (in Polish), 2011.
- 4. Meier, A., Gonter, M., Kruse, R., Artificial intelligence for developing an accident severity prediction function. ATZ worldwide 2017, 119, 64-69, https://doi.org/10.1007/s38311-017-0026-z
- 5. Hackwood, S., Beni, G, Self-organization of sensors for swarm intelligence. Proceedings 1992 IEEE International Conference on Robotics and Automation 1992, 1, 819-829, https://doi.org/10.1109/ROBOT.1992.220268
- 6. Karaboga, D., An idea based on honey bee swarm for numerical optimization. Tech. Rep. Citeseer, 2005.
- 7. Karaboga, D., Basturk, B., Foundations of fuzzy logic and soft computing artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. Springer Berlin Heidelberg 2007, 789-798, https://doi.org/10.1109/3477.484436
- 8. Dorigo, M., Maniezzo, V., Colorni, A., Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cyberetics, Part B (Cybernetics) 1996, 1, 29-41, https://doi.org/10.1007/978-3-540-72950-1\_77
- 9. Xin-She Y., Nature-Inspired Algorithms and Applied Optimization. Springer Cham, 2017. https://doi.org/10.1007/978-3-319-67669-2
- 10. Limoncelli, Thomas A., The practice of system and network administration. Addison-Wesley Professional, 2009.
- 11. Karaboga, D., Basturk, B., A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim 2007, 39, 459-471, https://doi.org/10.1007/s10898-007-9149-x
- 12. Komar, D., A new implementation of the ant algorithm using multiprocessor and distributed processing technology in the navigation system. Scientific Bulletin of the Wroclaw University of Applied Information Technology. Information technology (in Polish), 2013, 3, 17-22, http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-36e2fd37-410b-4109-8dec-b755222a1b89
- 13. Hetmaniok, E., Solution of the two-dimensional inverse problem of the binary alloy solidification by applying the Ant Colony Optimization algorithm. International Communications in Heat and Mass Transfer 2015, 67, 39-45, https://10.1016/j.icheatmasstransfer.2015.05.029
- 14. Hetmaniok, E. , Słota, D., Zielonka, A., Using the swarm intelligence algorithms in solution of the two-dimensional inverse Stefan problem. Computers and Mathematics with Applications 2015, 4, 347-361. https://doi.org/10.1016/j.camwa.2014.12.013
- 15. Górecki, J., Preliminary analysis of the sensitivity of the FEM model of the process of dry ice extrusion in the die with a circularly converging channel on the changing its geometrical parameters. IOP Conference Series: Materials Science and Engineering 2021, 1199, 39-45, https://dx.doi.org/10.1088/1757-899X/1199/1/012006
- 16. Berdychowski, M., Górecki, J., Biszczanik, A., Wałęsa, K., Numerical simulation of dry ice compaction process: comparison of DruckerPrager/cap and cam clay models with experimental results. Materials 2022, 3, 65-70, https://doi.org/10.24425/123603
- 17. Gawrońska, E., Dyja, R., Numerical calculations of the cast solidification with the complex shape including the movement of the liquid phase. Archives of Foundry Engineering 2018, 4, 347-361, https://doi.org/10.1016/j.camwa.2014.12.013
- 18. Ranjan Das, Subhash C. Mishra, R. Uppaluri, Retrieval of thermal properties in a transient conduction–radiation problem with variable thermal conductivity. International Journal of Heat and Mass Transfer 2009, 52, 2749-2758, https://doi.org/10.1016/j.ijheatmasstransfer.2008.12.009
- 19. Das, R., Mishra, S.C., Kumar, TB P., Uppaluri, R., An inverse analysis for parameter estimation applied to a non-fourier conduction-radiation problem. Heat Transfer Engineering 2011, 32, 455-466.
- 20. E,, Dyja, R., Zych, M., Domek, G., Selection of the heat transfer coefficient using swarming algorithms. Acta Mechanica et Automatica 2022, 14, 325-339, https://doi:10.2478/ama-2022-0039
- 21. Gawrońska, E., Dyja, R., Zych, M., Domek, G., Impact of input parameters on numerical calculations optimized by swarming algorithms during computer simulations of the heat conduction phenomenon. Journal of Applied Mathematics and Computational Mechanics 2022, 21, 107-118, https://doi.org/10.17512/jamcm.2022.4.10
- 22. Gawronska, E., Zych, M., Dyja, R. et al., Using artificial intelligence algorithms to reconstruct the heat transfer coefficient during heat conduction modeling. Sci Rep 2022, 13, https://doi.org/10.1038/s41598-023-42536-w
- 23. Sczygiol, N., Numerical modeling of thermomechanical phenomena in the solidifying casting and mold. Publishing house of the Częstochowa University of Technology (in Polish), 2000.
- 24. Taler, J., Duda, P., Solving simple and inverse heat conduction problems. Scientific and Technical Publishing House (in Polish), 2003.
- 25. Zhou, C., Yin, K., Cao, Y., et al., A novel method for landslide displacement prediction by integrating advanced computational intelligence algorithms. Scientific Reports 2018, 8, https://doi.org/10.1038/s41598-018-25567-6
- 26. Gerardo, B., Wang, J., Swarm Intelligence. Proceedings of the Seventh Annual Meeting of the Robotic Society of Japan 1989, 425-428, https://doi.org/doi:10.1007/978-3-642-58069-7\_38
- 27. Komar,D., A new implementation of an ant algorithm using multiprocessor and distributed computing technologies in navigation system. Scientific Bulletin of Wroclaw School of Applied Informatics. Informatica 2013, 3, 17-22.
- 28. Tomera, M., The use of swarm algorithms to optimize parameters in models of control systems. Scientific Journals of the Faculty of Electrical and Control Engineering at the Gdansk University of Technology (in Polish) 2015, 46, 97-102.
- 29. Hazem, A., Glasgow, J., Swarm intelligence: concepts, models and applications. School Of Computing, Queens University Technical Report, 2012, https://doi.org/10.13140/2.1.1320.2568
- 30. Geuzaine, Ch., Remacle, J.-F., Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 2009, 79, 1309-1331, https://doi.org/10.1002/nme.2579
- 31. Kodali, Hari K., Ganapathysubramanian, B., A computational framework to investigate charge transport in heterogeneous organic photovoltaic devices. Computer Methods in Applied Mechanics and Engineering 2012, 247-248, 113-129, https://doi.org/10.1016/j.cma.2012.08.012
- 32. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F., Efficient management of parallelism in object-oriented numerical software libraries. Modern Software Tools for Scientific Computing 1997, 163-202. https://doi.org/10.1007/978-1-4612-1986-6\_8
- 33. Dyja, R., Gawronska, E. , Grosser, A., Jeruszka, P., Sczygiol, N., Estimate the impact of different heat capacity approximation methods on the numerical results during computer simulation of solidification. Engineering Letters 2016, 24:2.
- 34. Garnier, S., Gautrais, J., Theraulaz, G., The biological principles of swarm intelligence. Swarm Intelligence 2007, 31, 1935-3820, https://doi.org/10.1007/s11721-007-0004-y
- 35. Tong, A., Improving the accuracy of temperature measurements. Sensor Review 2001, 21, 193-198, https://doi.org/10.1108/02602280110398044.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f461f4e2-7190-425a-89a5-3fe06c2ce5ba