Warianty tytułu
Języki publikacji
Abstrakty
We prove an analogue of Ehrhard's inequality for the two-dimensional isotropic Cauchy measure. In contrast to the Gaussian case, the inequality is not valid for non-convex sets. We provide the proof for rectangles which are symmetric with respect to one coordinate axis.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
163--175
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warszawa, Poland, Tomasz.Byczkowski@gmail.com
autor
- Faculty of Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, Jacek.Malecki@pwr.edu.pl
autor
- Faculty of Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, Tomasz.Zak@pwr.edu.pl
Bibliografia
- 1. C. Borell, The Ehrhard inequality, C. R. Math. Acad. Sci. Paris 337 (2003), 663-667.
- 2. T. Byczkowski and T. Żak, Borell and Landau-Shepp inequalities for Cauchy-type measures, Probab. Math. Statist. 41 (2021), 129-152.
- 3. A. Ehrhard, Symétrisation dans l'espace de Gauss, Math. Scand. 53 (1983), 281-301.
- 4. R. J. Gardner, The Brunn-Minkowski Inequality, Bull. Amer. Math. Soc. 39 (2002), 355-405.
- 5. R. Latała and K. Oleszkiewicz, Gaussian measures of dilations of convex symmetric sets, Ann. Probab. 27 (1999), 1922-1938.
- 6. A. Prekopa, Logarithmic concave measures with application to stochastic programming, Acta Sci. Math. (Szeged) 32 (1971), 301-316.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f4355d94-db26-4110-a95b-7428a9e75bfc